<address id="ousso"></address>
<form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
  1. 高中數學說課稿

    時間:2025-07-30 09:41:03 高中說課稿 我要投稿

    關于高中數學說課稿范文合集七篇

      作為一位兢兢業業的人民教師,就不得不需要編寫說課稿,是說課取得成功的前提。說課稿應該怎么寫才好呢?以下是小編精心整理的高中數學說課稿7篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

    關于高中數學說課稿范文合集七篇

    高中數學說課稿 篇1

      大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設計。

      一 教材分析

      本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。

      根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:

      認知目標:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理與三角形的內角和定理解斜三角形的兩類問題。

      能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。

      情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,給學生成功的體驗,激發學生學習的興趣。

    教學重點:正弦定理的內容,正弦定理的證明及基本應用。

      教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數。

      二 教法

      根據教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當的提示和指導。突破難點的方法:抓住學生的能力線聯系方法與技能使學生較易證明正弦定理,另外通過例題和練習來突破難點

      三 學法:

      指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。

      四 教學過程

      第一:創設情景,大概用2分鐘

      第二:實踐探究,形成概念,大約用25分鐘

      第三:應用概念,拓展反思,大約用13分鐘

      (一)創設情境,布疑激趣

      “興趣是最好的老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的`部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。

      (二)探尋特例,提出猜想

      1.激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。

      2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。

      3.讓學生總結實驗結果,得出猜想:

      在三角形中,角與所對的邊滿足關系

      這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。

      (三)邏輯推理,證明猜想

      1.強調將猜想轉化為定理,需要嚴格的理論證明。

      2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。

      3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。

      4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明

      (四)歸納總結,簡單應用

      1.讓學生用文字敘述正弦定理,引導學生發現定理具有對稱和諧美,提升對數學美的享受。

      2.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。

      3.運用正弦定理求解本節課引引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的價值觀。

      (五)講解例題,鞏固定理

      1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

      例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

      2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

    高中數學說課稿 篇2

      一、教學內容分析

      圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象.恰當地利用定義解題,許多時候能以簡馭繁.因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。

      二、學生學習情況分析

      我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。

      三、設計思想

      由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情.在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率.

      四、教學目標

      1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。

      2.通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

      3.借助多媒體輔助教學,激發學習數學的興趣.

      五、教學重點與難點:

      教學重點

      1.對圓錐曲線定義的理解

      2.利用圓錐曲線的定義求“最值”

      3.“定義法”求軌跡方程

      教學難點:

      巧用圓錐曲線定義解題

      六、教學過程設計

      【設計思路】

      (一)開門見山,提出問題

      一上課,我就直截了當地給出——

      例題1:(1) 已知A(-2,0), B(2,0)動點M滿足|MA|+|MB|=2,則點M的.軌跡是( )。

      (A)橢圓 (B)雙曲線 (C)線段 (D)不存在

      (2)已知動點 M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是( )。

      (A)橢圓 (B)雙曲線 (C)拋物線 (D)兩條相交直線

      【設計意圖】

      定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節課首先要弄清楚的問題。

      為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。

      【學情預設】

      估計多數學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折—— 如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)2

      5這樣,很快就能得出正確結果。如若不然,我將啟發他們從等式兩端的式子|3x4y|5

      入手,考慮通過適當的變形,轉化為學生們熟知的兩個距離公式。

      在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是 ,實軸長為 ,焦距為 。以深化對概念的理解。

      (二)理解定義、解決問題

      例2 (1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內切,求△ABC面積的最大值。

      (2)在(1)的條件下,給定點P(-2,2), 求|PA|

      七、教學反思

      1.本課將借助于“XXX”,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的數學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結合的教學優勢。

      2.利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養學生思維能力,使學生從學會一個問題的求解到掌握一類問題的解決方法. 循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”并為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量并不會小。

      總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節奏仍是我今后工作中的一個重要研究課題.而要能真正進行素質教育,培養學生的創新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術,讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質,提高了數學思維能力。

    高中數學說課稿 篇3

      各位評委、各位老師:大家好!

      我叫李長杉,來自甘肅省嘉峪關市第一中學。今天我說課的課題是《一元二次不等式的解法》(第一課時)。下面我將圍繞本節課"教什么?"、"怎樣教?"以及"為什么這樣教?"三個問題,從教材內容分析、教法學法分析、教學過程分析和課堂意外預案等幾個方面逐一加以分析和說明。

      一。教材內容分析:

      1.本節課內容在整個教材中的地位和作用。

      概括地講,本節課內容的地位體現在它的基礎性,作用體現在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續和深化,對已學習過的集合知識的鞏固和運用具有重要的作用,也與后面的函數、數列、三角函數、線形規劃、直線與圓錐曲線以及導數等內容密切相關。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數學教學中具有很強的基礎性,體現出很大的工具作用。

      2.教學目標定位。

      根據教學大綱要求、高考考試大綱說明、新課程標準精神、高一學生已有的知識儲備狀況和學生心理認知特征,我確定了四個層面的教學目標。第一層面是面向全體學生的知識目標:熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數三者的關系。第二層面是能力目標,培養學生運用數形結合與等價轉化等數學思想方法解決問題的能力,提高運算和作圖能力。第三層面是德育目標,通過對解不等式過程中等與不等對立統一關系的認識,向學生逐步滲透辨證唯物主義思想。第四層面是情感目標,在教師的啟發引導下,學生自主探究,交流討論,培養學生的合作意識和創新精神。

      3.教學重點、難點確定。

      本節課是在復習了一次不等式的解法之后,利用二次函數的圖象研究一元二次不等式的解法。只要學生能夠理解一元二次方程、一元二次不等式和二次函數三者的關系,并利用其關系解不等式即可。因此,我確定本節課的教學重點為一元二次不等式的解法,關鍵是一元二次方程、一元二次不等式和二次函數三者的關系。

      二。教法學法分析:

      數學是發展學生思維、培養學生良好意志品質和美好情感的重要學科,在教學中,我們不僅要使學生獲得知識、提高解題能力,還要讓學生在教師的啟發引導下學會學習、樂于學習,感受數學學科的人文思想,使學生在學習中培養堅強的`意志品質、形成良好的道德情感。為了更好地體現課堂教學中"教師為主導,學生為主體"的教學關系和"以人為本,以學定教"的教學理念,在本節課的教學過程中,我將緊緊圍繞教師組織——啟發引導,學生探究——交流發現,組織開展教學活動。我設計了①創設情景——引入新課,②交流探究——發現規律,③啟發引導——形成結論,④練習小結——深化鞏固,⑤思維拓展——提高能力,五個環環相扣、層層深入的教學環節,在教學中注意關注整個過程和全體學生,充分調動學生積極參與教學過程的每個環節。

      三。教學過程分析:

      1.創設情景——引入新課。我們常說"興趣是最好的老師",長期以來,學生對學習數學缺乏興趣,甚至失去信心,一個重要的原因,是老師在教學中不重視學生對學習的情感體驗,教學應該充分考慮學生的情感和需要,想方設法讓學生在學習中樹立信心,感受學習的樂趣。根據教材內容的安排,我以學生熟悉的畫一次函數圖象、求一次方程和一次不等式的解為背景知識切入,設置一個練習題組,一方面讓學生總結復習已有知識,為后面學習二次不等式的解法打下基礎,做好鋪墊,另一方面,使學生在自己熟悉的問題中首先獲得解題成功的快樂體驗,然后以20xx年江蘇省的一道高考試題為引子,引入本節課的新授內容。對于本題,引導學生,利用上面解練習題組1的方法,畫出二次函數圖象來解答。二次函數是初中數學的重要內容,本題又給出了函數圖象上許多點,相信學生畫出圖象應該不成問題,只要教師適當點撥,學生不難得到正確答案。以高考試題為背景引入新課,可以提高學生興趣,抓住學生眼球,吸引學生注意力,還可以讓學生實實在在感受到,高考題就在我們的課本中,就在我們平常的練習中。

      2.探究交流——發現規律。從特殊到一般是我們發現問題、尋求規律、揭示問題本質最常用的方法之一。我把課本例題1、2編為練習題組(一),交由學生用上面解高考題的方法——圖象法去解,學生由于熟知二次函數圖象,求解應該不會有太大的問題。在這個過程中,教師要啟發引導學生注意對比兩題的異同,組織引導學生展開交流討論,探討第(2)題能不能先把二次項系數化正以后再構造函數畫圖求解。然后達成共識,如果二次項系數為負數時,先做等價轉化,把二次項系數化為正數再解,課本19頁例3、例4作為題組(二),繼續讓學生用上面的圖象法,由學生自己求解,這時我及時提示學生注意這兩題與題組(一)中兩題的不同(例1、例2對應方程都有兩個不等實根,例3對應方程有兩相等實根,例4對應方程無實根)。兩個題組的練習之后,可以尋求解二次不等式的一般規律。

      3.啟發引導——形成結論。前面兩個題組的四個小題,基本涵蓋了一般一元二次不等式解的各種情況,進一步啟發引導學生將特殊、具體題目的結論做一般化總結,與學生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情況應該水到渠成。至此,學生可以感受到,解二次不等式只須①將二次項系數化為正數,②求解二次方程 ax2+bx+c=0 的根。③根據①后的二次不等式的符號寫出解集即可,必要時也可以結合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為"三步曲"法)。

      4.訓練小結——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時組織學生進行課堂練習,完成課本21頁練習1-4題。本環節請不同層次的學生在黑板上書寫解題過程,之后師生共同糾正問題,規范解題過程的書寫。

      5.延伸拓寬——提高能力。課堂教學既要面向全體學生,又應關注學生的個體差異。體現分類推進,分層教學的原則。為此,我又設計了一個提高練習題組,共有三道備選題目,以供程度較好學有余力的學生能夠更好的展示自己的解題能力,取得更進一步的提高。

      四。課堂意外預案:

      新課程理念下的教學更多的關注學生自主探究、關注學生的個性發展,鼓勵學生勇于提出問題,培養學生思維的批評性。在課堂上學生往往會提出讓老師感到"意外"的問題,我在平時的教學中重視對"課堂意外預案"的探索和思考,備課時盡量設想課堂中可能會出現的各種情況,做到有備無患,以免在課堂中學生提出讓自己出乎意料的問題,使自己陷入被動尷尬境地。結合以往經驗,在本節課,我提出兩個"意外預案".

      1.學生在做課本練習1(x+2)(x-3)>0 時,可能會問到轉化為不等式組{ 或{ 求解對不對。學生提出的問題,想法非常好,應給予肯定和鼓勵,這與下節簡單分式不等式和高次不等式的解法有關,是解不等式的另一種解法——等價轉化法,不在本節課之列。

      2.根據以往的經驗,在解(x-1)(x+2)>1一類的不等式的時候,由于受方程(x+1)(x+2)=0 可轉化為x-1=0或x+2=0求解的影響,有可能會出現將不等式轉化為不等式組{ 來求解的錯誤做法,教師要關注學生,及時發現問題并給予糾正,指出上面的轉化不是等價轉化。

      以上是我對本節課的一些粗淺的認識和構想,如有不妥之處,懇請各位專家、各位同仁批評指正。謝謝大家!

    高中數學說課稿 篇4

      一、教材分析:

      "數列"是中學數學的重要內容之一。不僅在歷年的高考中占有一定的比重,而且在實際生活中也經常要用到數列的一些知識。例如:儲蓄、分期付款中的有關計算就要用到數列知識。

      就本節課而言,在給出數列的基本概念之后,結合例題,指出數列可以看作定義域為正整數集(或它的有限子集)的函數。因此,本節課的內容,一方面是前面函數知識的延伸及應用,可以使學生加深對函數概念的理解;另一方面也可以為后面學習等差數列、等比數列的通項、求和等知識打下鋪墊。所以本節課在教材中起到了"承上啟下"的作用,必須講清、講透。

      二、教學目標:

      根據上面對教材的分析,并結合學生的認知水平和思維特點,確定本節課的教學目標。

      1、知識目標:

      (1)形成并掌握數列及其有關概念,識記數列的表示和分類,了解數列通項公式的意義。

      (2)理解數列的通項公式,能根據數列的通項公式寫出數列的任意一項。對比較簡單的數列,使學生能根據數列的前幾項觀察歸納出數列的通項公式,并通過數列與函數的比較加深對數列的認識。

      2、能力目標:

      培養學生觀察、歸納、類比、聯想等分析問題的能力,同時加深理解數學知識之間相互滲透性的思想。

      3、情感目標:

      通過滲透函數、方程思想,培養學生的思維能力,使學生在民主、和諧的活動中感受學習的樂趣。通過介紹數列與函數間存在的特殊到一般關系,向學生進行辯證唯物主義思想教育。

      三、重點、難點:

      1、教學重點

      理解數列的概念及其通項公式,加強與函數的聯系,并能根據通項公式寫出數列中的任意一項。

      2、教學難點

      根據數列前幾項的特點,通過多角度、多層次的觀察和分析,歸納出數列的通項公式。

      四、教法學法

      本節課以"問題情境——歸納抽象——鞏固訓練"的模式展開,引導學生從知識和生活經驗出發,提出問題并與學生共同探索、討論解決問題的.方法,讓學生經歷知識的形成過程,從而理解更加透徹。

      現代教學觀明確指出:教師是主導,學生是主體,學生應成為學習的主人。根據本節內容及學生的認知規律,針對不同內容應選擇不同的方法。對于國際象棋棋盤麥粒采用電腦動畫演示,增強感性認識;所舉的引例及數列的函數定義,可采用探索發現法;對通項公式及數列的分類等概念采用指導閱讀法;對于難題(根據數列的前幾項寫出一個通項公式)采用講練結合法。

      "授人以魚,不如授人以漁",平時在教學中教師應不斷指導學生學會學習。本節課從學生實際出發,創設情境,引導學生觀察、分析,探索發現,歸納總結,培養學生積極思維的品質,加強主動學習的能力。

      為了有效地突出重點,突破難點,增大課堂容量,提高課堂效率,本節課將常規教學手段與現代教學手段相結合,將引例、例題、練習等實物投影。

      五、教學過程

      1、創設情景,激發興趣,引入新課

      (1)電腦動畫演示:國際象棋棋盤格子中放有麥粒的示意圖,從而得到一組數:1,2,22,23……263

      敘述故事:給你一張報紙,你可以用它登上月球,你相信嗎?只要不斷地將報紙對折42次以后,報紙的厚度就可以達到月球和地球的距離。

      設計意圖:以實例引入概念,再配以電腦動畫,敘述小故事,增強了感性認識,調動學生學習新知識的積極性。

      (2)投影演示,再觀察以下幾列數:

      ①某班學生的學號:1,2,3,4……,50

      ②從1984年到20xx年,中國體育健兒參加奧運會每屆所得的金牌數:

      15,5,16,16,28,32

      ③某次活動,在1km長的路段,從起點開始,每隔10m放置一個垃圾筒,由近及遠各筒與起點的距離排成一列數:0.10.20.30,……1000

      ④放射性物質衰變,設原質量為1,則各年的剩留量依次為:1,0.84,0.842,0.843,……

      2、歸納抽象,形成概念

      (1)學生嘗試敘述數列的定義:啟發學生觀察上述幾組數據后,進行歸納總結定義:按一定次序排成的一列數,叫數列,便于培養學生的抽象概括能力。

      舉例1:1,3,5,7與7,5,3,1 這兩個數列有何區別?

      舉例2:-1,1,-1,1,……是不是一個數列?

      設計意圖:使學生注意把數列中的數和集合中的元素區分開來:

      ①數列中的數是有順序的,而集合中的元素是無序的。

      ②數列中的數可以重復出現,而集中的元素不能重復出現。

      進一步加深學生對數列定義的理解。

      (2)數列的項及項的表示方法: an

      (3)數列的表示方法:可寫成:a1,a2,a3,……,an……

      或簡記為:{an},注意an與{an}的區別

      上述(2)(3)采用指導閱讀法(書P106頁第7節~第8節第一句話),對an與{an}的區別進行集體討論歸納。

      3、通項公式的探索

      (1)觀察歸納定義

      由學生觀察引例中數列的項與它在數列中的位置(即項的序號)間的關系:

      實物投影:

      序號 1 2 3 …… 64

      ↓ ↓ ↓ ↓

      項 1= 21-1 2=22-1 22 = 23-1 …… 263

      從而可看出項與項的序號之間可用一個公式:an =2n-1表示,該公式叫數列的通項公式,然后歸納抽象出數列的通項公式的定義(略)。

      (2)用函數觀點看待數列:這是一個難點,講解必須清楚、透徹。數列可看作是以自然數集或它的有限子集為定義域的函數,當自變量由小到大依次取值時對應的一列函數值(這是數列的本質),其圖象是一群孤立的點,畫圖(棋盤麥粒這個數列)

      設計意圖:加深對函數概念的理解。

      (3)數列的分類,并口答引例及數列①②③④分別歸于哪類數列。

      4、講解例題

      設計例題:①根據通項公式寫出前幾項并會判斷某個數是否為該數列中的項;②根據數列的前幾項寫出一個通項公式。

      例1,根據下列數列{an}的通項公式,寫出它的前5項

      (1) an= n/(n+1) (2)an=(-1)n · n

      設計意圖:使學生正確掌握通項與序號的關系。

      變式訓練:問 2589/2590是否為數列(1)中的項

      設計意圖:使學生明確方程思想是解決數列問題的重要方法。

      例2,寫出下列數列的一個通項公式,使它的前4項分別是下列各數:

      (1)1,3,5,7

      (2)2, -2,2 ,-2

      (3)1 ,11 ,111 ,

      設計意圖:引導學生進行解題后反思,對完善學生的認知結構是十分必要。寫通項公式時,就是要去發現an與n的關系,對各項進行多角度、多層次觀察,找出這些項與相應的項數(即序號)之間的對應關系。(注:遇到分數,可分別觀察分子組的數列特征與分母組成的數列特征;若為正負相間的項,則可用-1的奇次冪或偶次冪進行符號交換,有時也可根據相鄰的項,適當調整有關的表達式。)

      5、練習鞏固

      投影演示:

      (1)寫出數列1,-1,1,-1,……的一個通項公式

      (2)是否所有數列都有通項公式?

      上述(1)的設計意圖:an=(-1)n+1也可寫成 (分段函數的形式)(當n為奇數時,n為偶數時),說明根據數列的前幾項寫出的通項公式可能不唯一。(2):引例②就沒有通項公式。通過這些練習,使學生能及時消化,及時鞏固所學內容。

      6、歸納小結

      由學生試著總結本節課所學內容,老師適當補充,可以訓練學生的收斂思維,有助于完善學生的思維結構。

      (1) 數列及有關概念。

      (2) 根據數列的通項公式求任意一項,并能判斷某數是否為該數列中的項。

      (3) 根據數列的前幾項寫出數列的一個通項公式。

      (4) 數列與函數的關系

      7、課后作業:

      (1)課本P110/習題3.1/1(3)(4)(5);2、書P108/4(1)(3)(4)

      (2)復習看書P106-107

      六、評價與分析

      本節課,教師可通過創設情景,適時引導的方式來激發學生積極思考的欲望,有時直接講解,有時組織掌握學生集體討論、探索發現,課堂上除反復強調注意點外,還應通過課堂練習和課后作業來強化它們。

      通過本節課的學習,學生不僅掌握了數列及有關概念,而且可體會到數學概念形成過程中蘊含的基本數學思想:"函數思想、數形結合思想、特殊化思想",使之獲得內心感受,提高了基本技能和解決問題的能力,也可以逐漸學會辯證地看待問題。

    高中數學說課稿 篇5

      一、教材分析

      1、教學內容

      本節課內容教材共分兩課時進行,這是第一課時,該課時主要學習函數的單調性的的概念,依據函數圖象判斷函數的單調性和應用定義證明函數的單調性。

      2、教材的地位和作用

      函數單調性是高中數學中相當重要的一個基礎知識點,是研究和討論初等函數有關性質的基礎。掌握本節內容不僅為今后的函數學習打下理論基礎,還有利于培養學生的抽象思維能力,及分析問題和解決問題的能力。

      3、教材的重點﹑難點﹑關鍵

      教學重點:函數單調性的概念和判斷某些函數單調性的方法。明確單調性是一個局部概念。

      教學難點:領會函數單調性的實質與應用,明確單調性是一個局部的概念。

      教學關鍵:從學生的學習心理和認知結構出發,講清楚概念的形成過程、

      4、學情分析

      高一學生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發展,但學生思維不成熟、不嚴密、意志力薄弱,故而整個教學環節總是創設恰當的問題情境,引導學生積極思考,培養他們的邏輯思維能力。從學生的認知結構來看,他們只能根據函數的圖象觀察出“隨著自變量的增大函數值增大”等變化趨勢,所以在教學中要充分利用好函數圖象的直觀性,發揮好多媒體教學的優勢;由于學生在概念的掌握上缺少系統性、嚴謹性,在教學中注意加強。

      二、目標分析

      (一)知識目標:

      1、知識目標:理解函數單調性的概念,掌握判斷一些簡單函數的單調性的方法;了解函數單調區間的概念,并能根據函數圖象說出函數的單調區間。

      2、能力目標:通過證明函數的單調性的學習,使學生體驗和理解從特殊到一般的數學歸納推理思維方式,培養學生的觀察能力,分析歸納能力,領會數學的歸納轉化的思想方法,增加學生的知識聯系,增強學生對知識的主動構建的能力。

      3、情感目標:讓學生積極參與觀察、分析、探索等課堂教學的雙邊活動,在掌握知識的過程中體會成功的喜悅,以此激發求知欲望。領會用運動變化的觀點去觀察分析事物的方法。通過滲透數形結合的數學思想,對學生進行辨證唯物主義的思想教育。

      (二)過程與方法

      培養學生嚴密的邏輯思維能力以及用運動變化、數形結合、分類討論的方法去分析和處理問題,以提高學生的思維品質,通過函數的單調性的學習,掌握自變量和因變量的關系。通過多媒體手段激發學生學習興趣,培養學生發現問題、分析問題和解題的邏輯推理能力。

      三、教法與學法

      1、教學方法

      在教學中,要注重展開探索過程,充分利用好函數圖象的直觀性、發揮多媒體教學的優勢。本節課采用問答式教學法、探究式教學法進行教學,教師在課堂中只起著主導作用,讓學生在教師的提問中自覺的發現新知,探究新知,并且加入激勵性的語言以提高學生的積極性,提高學生參與知識形成的全過程。

      2、學習方法

      自我探索、自我思考總結、歸納,自我感悟,合作交流,成為本節課學生學習的主要方式。

      四、過程分析

      本節課的教學過程包括:問題情景,函數單調性的定義引入,增函數、減函數的定義,例題分析與鞏固練習,回顧總結和課外作業六個板塊。這里分別就其過程和設計意圖作一一分析。

      (一)問題情景:

      為了激發學生的學習興趣,本節課借助多媒體設計了多個生活背景問題,并就圖表和圖象所提供的信息,提出一系列問題和學生交流,激發學生的學習興趣和求知欲望,為學習函數的單調性做好鋪墊。(祥見課件)

      新課程理念認為:情境應貫穿課堂教學的始終。本節課所創設的生活情境,讓學生親近數學,感受到數學就在他們的周圍,強化學生的感性認識,從而達到學生對數學的理解。讓學生在課堂的一開始就感受到數學就在我們身邊,讓學生學會用數學的眼光去關注生活。

      (二)函數單調性的定義引入

      1、幾何畫板動畫演示,請學生認真觀察,并回答問題:通過學生已學過的函數y=2x+4,,的圖象的動態形式形象出x、y間的變化關系,使學生對函數單調性有感性認識。,進行比較,分析其變化趨勢。并探討、回答以下問題:

      問題1、觀察下列函數圖象,從左向右看圖象的變化趨勢?

      問題2:你能明確說出“圖象呈上升趨勢”的意思嗎?

      通過學生的交流、探討、總結,得到單調性的“通俗定義”:

      從在某一區間內當x的值增大時,函數值y也增大,到圖象在該區間內呈上升趨勢再到如何用x與f(x)來描述上升的圖象?

      通過問題逐步向抽象的定義靠攏,將圖形語言轉化為數學符號語言。幾何畫板的靈活使用,數形有機結合,引導學生從圖形語言到數學符號語言的翻譯變得輕松。

      設計意圖:

      ①通過學生熟悉的知識引入新課題,有利于激發學生的學習興趣和學習熱情,同時也可以培養學生觀察、猜想、歸納的思維能力和創新意識,增強學生自主學習、獨立思考,由學會向會學的轉化,形成良好的思維品質。

      ②通過學生已學過的一次y=2x+4,,的圖象的動態形式形象地反映出x、y間的'變化關系,使學生對函數單調性有感性認識。

      ③從學生的原有認知結構入手,探討單調性的概念,符合“最近發展區的理論”要求。

      ④從圖形、直觀認識入手,研究單調性的概念,其本身就是研究、學習數學的一種方法,符合新課程的理念。

      (三)增函數、減函數的定義

      在前面的基礎上,讓學生討論歸納:如何使用數學語言來準確描述函數的單調性?在學生回答的基礎上,給出增函數的概念,同時要求學生討論概念中的關鍵詞和注意點。

      定義中的“當x1x2時,都有f(x1)

      注意:

      (1)函數的單調性也叫函數的增減性;

      (2)注意區間上所取兩點x1,x2的任意性;

      (3)函數的單調性是對某個區間而言的,它是一個局部概念。

      讓學生自已嘗試寫出減函數概念,由兩名學生板演。提出單調區間的概念。

      設計意圖:通過給出函數單調性的嚴格定義,目的是為了讓學生更準確地把握概念,理解函數的單調性其實也叫做函數的增減性,它是對某個區間而言的,它是一個局部概念,同時明確判定函數在某個區間上的單調性的一般步驟。這樣處

      理,同時也是讓學生感悟、體驗學習數學感念的方法,提高其個性品質。

      (四)例題分析

      在理解概念的基礎上,讓學生總結判別函數單調性的方法:圖象法和定義法。

      2、例2、證明函數在區間(—∞,+∞)上是減函數。

      在本題的解決過程中,要求學生對照定義進行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過自己的解決,總結證明單調性問題的一般方法。

      變式一:函數f(x)=—3x+b在R上是減函數嗎?為什么?

      變式二:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來判斷。

      變式三:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來判斷。

      錯誤:實質上并沒有證明,而是使用了所要證明的結論

      例題設計意圖:在理解概念的基礎上,讓學生總結判別函數單調性的方法:圖象法和定義法。例1是教材中例題,它的解決強化學生應用數形結合的思想方法解題的意識,進一步加深對概念的理解,同時也是依托具體問題,對單調區間這一概念的再認識;要了解函數在某一區間上是否具有單調性,從圖上進行觀察是一種常用而又粗略的方法。嚴格地說,它需要根據單調函數的定義進行證明。例2是教材練習題改編,通過師生共同總結,得出使用定義證明的一般步驟:任取—作差(變形)—定號—下結論,通過例2的解決是學生初步掌握運用概念進行簡單論證的基本方法,強化證題的規范性訓練,從而提高學生的推理論證能力。例3是教材例2抽象出的數學問題。目的是進一步強化解題的規范性,提高邏輯推理能力,同時讓學生學會一些常見的變形方法。

      (五)鞏固與探究

      1、教材p36練習2,3

      2、探究:二次函數的單調性有什么規律?

      (幾何畫板演示,學生探究)本問題作為機動題。時間不允許時,就為課后思考題。

      設計意圖:通過觀察圖象,對函數是否具有某種性質作出一種猜想,然后通過推理的辦法,證明這種猜想的正確性,是發現和解決問題的一種常用數學方法。

      通過課堂練習加深學生對概念的理解,進一步熟悉證明或判斷函數單調性的方法和步驟,達到鞏固,消化新知的目的。同時強化解題步驟,形成并提高解題能力。對練習的思考,讓學生學會反思、學會總結。

      (六)回顧總結

      通過師生互動,回顧本節課的概念、方法。本節課我們學習了函數單調性的知識,同學們要切記:單調性是對某個區間而言的,同時在理解定義的基礎上,要掌握證明函數單調性的方法步驟,正確進行判斷和證明。

      設計意圖:通過小結突出本節課的重點,并讓學生對所學知識的結構有一個清晰的認識,學會一些解決問題的思想與方法,體會數學的和諧美。

      (七)課外作業

      1、教材p43習題1。3A組1(單調區間),2(證明單調性);

      2、判斷并證明函數在上的單調性。

      3、數學日記:談談你本節課中的收獲或者困惑,整理你認為本節課中的最重要的知識和方法。

      設計意圖:通過作業1、2進一步鞏固本節課所學的增、減函數的概念,強化基本技能訓練和解題規范化的訓練,并且以此作為學生對本結內容各項目標落實的評價。新課標要求:不同的學生學習不同的數學,在數學上獲得不同的發展。作業3這種新型的作業形式是其很好的體現。

      (七)板書設計(見ppt)

      五、評價分析

      有效的概念教學是建立在學生已有知識結構基礎上,,因此在教學設計過程中注意了:

      第一、教要按照學的法子來教;

      第二、在學生已有知識結構和新概念間尋找“最近發展區”;

      第三、強化了重探究、重交流、重過程的課改理念。讓學生經歷“創設情境——探究概念——注重反思——拓展應用——歸納總結”的活動過程,體驗了參與數學知識的發生、發展過程,培養“用數學”的意識和能力,成為積極主動的建構者。

      本節課圍繞教學重點,針對教學目標,以多媒體技術為依托,展現知識的發生和形成過程,使學生始終處于問題探索研究狀態之中,激情引趣,并注重數學科學研究方法的學習,是順應新課改要求的,是研究性教學的一次有益嘗試。

    高中數學說課稿 篇6

      各位領導、專家、同仁:您們好!

      我說課的內容是高中數學第二冊(上冊)第七章《直線和圓的方程》中的第六節“曲線和方程”的第一課時,下面我的說課將從以下幾個方面進行闡述:

      一、教材分析

      教材的地位和作用

      “曲線和方程”這節教材揭示了幾何中的形與代數中的數相統一的關系,為“作形判數”與“就數論形”的相互轉化開辟了途徑,這正體現了解析幾何這門課的基本思想,對全部解析幾何教學有著深遠的影響。學生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學習的入門之徑。如果以為學生不真正領悟曲線和方程的關系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個基本概念的教學,這不能不說是一種“舍本逐題”的偏見,應該認識到這節“曲線和方程”的開頭課是解析幾何教學的“重頭戲”!

      根據以上分析,確立教學重點是:“曲線的方程”與“方程的曲線”的概念;難點是:怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程。

      二、教學目標

      根據教學大綱的要求以及本教材的地位和作用,結合高二學生的認知特點確定教學目標如下:

      知識目標:

      1、了解曲線上的點與方程的解之間的一一對應關系;

      2、初步領會“曲線的方程”與“方程的曲線”的概念;

      3、學會根據已有的情景資料找規律,進而分析、判斷、歸納結論;

      4、強化“形”與“數”一致并相互轉化的思想方法。

      能力目標:

      1、通過直線方程的引入,加強學生對方程的解和曲線上的點的一一對應關系的認識;

      2、在形成曲線和方程的.概念的教學中,學生經歷觀察、分析、討論等數學活動過程,探索出結論,并能有條理的闡述自己的觀點;

      3、能用所學知識理解新的概念,并能運用概念解決實際問題,從中體會轉化化歸的思想方法,提高思維品質,發展應用意識。

      情感目標:

      1、通過概念的引入,讓學生感受從特殊到一般的認知規律;

      2、通過反例辨析和問題解決,培養合作交流、獨立思考等良好的個性品質,以及勇于批判、敢于創新的科學精神。

      三、重難點突破

      “曲線的方程”與“方程的曲線”的概念是本節的重點,這是由于本節課是由直觀表象上升到抽象概念的過程,學生容易對定義中為什么要規定兩個關系產生困惑,原因是不理解兩者缺一都將擴大概念的外延。由于學生已經具備了用方程表示直線、拋物線等實際模型,積累了感性認識的基礎,所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學生對概念表述的嚴密性進行探索,自然地得出定義。為了強化其認識,又決定用集合相等的概念來解釋曲線和方程的對應關系,并以此為工具來分析實例,這將有助于學生的理解,有助于學生通其法,知其理。

      怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程是本節的難點。因為學生在作業中容易犯想當然的錯誤,通常在由已知曲線建立方程的時候,不驗證方程的解為坐標的點在曲線上,就斷然得出所求的是曲線方程。這種現象在高考中也屢見不鮮。為了突破難點,本節課設計了三種層次的問題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線的方程。通過這些例題讓學生再一次體會“二者”缺一不可。

      四、學情分析

      此前,學生已知,在建立了直角坐標系后平面內的點和有序實數對之間建立了一一對應關系,已有了用方程(有時以函數式的形式出現)表示曲線的感性認識(特別是二元一次方程表示直線),現在要進一步研究平面內的曲線和含有兩個變數的方程之間的關系,是由直觀表象上升到抽象概念的過程,對學生有相當大的難度。學生在學習時容易產生的問題是,不理解“曲線上的點的坐標都是方程的解”和“以這個方程的解為坐標的點都是曲線上的點”這兩句話在揭示“曲線和方程”關系時各自所起的作用。本節課的教學目標也只能是初步領會,要求學生能答出曲線和方程間必須滿足兩個關系時才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實例指出兩個關系的區別。

      五、教法分析

      新課程強調教師要調整自己的角色,改變傳統的教育方式,教師要由傳統意義上的知識的傳授者和學生的管理者,轉變為學生發展的促進者和幫助者,簡單的教書匠轉變為實踐的研究者,或研究的實踐者,在教育方式上,也要體現出以人為本,以學生為中心,讓學生真正成為學習的主人而不是知識的奴隸,基于此,本節課遵循了概念學習的四個基本步驟,重點采用了問題探究和啟發式相結合的教學方法。

      從實例、到類比、到推廣的問題探究,它對激發學生學習興趣,培養學習能力都十分有利。啟發引導學生得出概念,深化概念,并應用它去討論、研究和解決問題。在生生合作,師生互動中解決問題,為提高學生分析問題、解決問題的能力打下了基礎。

      利用多媒體輔助教學,節省了時間,增大了信息量,增強了直觀形象性。

      六、學法分析

      基礎教育課程改革要求加強學習方式的改變,提倡學習方式的多樣化,各學科課程通過引導學生主動參與,親身實踐,獨立思考,合作探究,發展學生搜集處理信息的能力,獲取新知識的能力,分析和解決問題的能力,以及交流合作的能力,基于此,本節課從實例引入→類比→推廣→得概念→概念挖掘深化→具體應用→作業中的研究性問題的思考,始終讓學生主動參與,親身實踐,獨立思考,與合作探究相結合,在生生合作,師生互動中,使學生真正成為知識的發現者和知識的研究者。

      七、教學過程分析

      1、感性認識階段——以舊帶新、提出課題

    高中數學說課稿 篇7

      一.說教材

      1.本節課主要內容是線性規劃的意義以及線性約束條件、線性目標函數、可行域、可行解、最優解等概念,根據約束條件建立線性目標函數。應用線性規劃的圖解法解決一些實際問題。

      2.地位作用:線性規劃是數學規劃中理論較完整、方法較成熟、應用較廣泛的一個分支,它可以解決科學研究、工程設計、經濟管理等許多方面的實際問題。簡單的線性規劃是在學習了直線方程的基礎上,介紹直線方程的一個簡單應用。通過這部分內容的學習,使學生進一步了解數學在解決實際問題中的應用,以培養學生學習數學的興趣、應用數學的意識和解決實際問題的能力。

      3.教學目標

      (1)知識與技能:了解線性規劃的意義以及線性約束條件、線性目標函數、可行域、可行解、最優解等概念,能根據約束條件建立線性目標函數。

      了解并初步應用線性規劃的圖解法解決一些實際問題。

      (2)過程與方法:提高學生數學地提出、分析和解決問題的能力,發展學生數學應用意識,力求對現實世界中蘊含的一些數學模式進行思考和作出判斷。

      (3)情感、態度與價值觀:體會數形結合、等價轉化等數學思想,逐步認識數學的應用價值,提高學習數學的興趣,樹立學好數學的自信心。

      4.重點與難點

      重點:理解和用好圖解法

      難點:如何用圖解法尋找線性規劃的最優解。

      二.說教學方法

      教學過程是教師和學生共同參與的過程,啟發學生自主性學習,充分調動學生的積極性、主動性;有效地滲透數學思想方法,提高學生素質。根據這樣的原則和所要完成的`教學目標,并為激發學生的學習興趣,我采用如下的教學方法:

      (1)啟發引導學生思考、分析、實驗、探索、歸納。這能充分調動學生的主動性和積極性。

      (2)采用“從特殊到一般”、“化抽象為具體”、“化靜為動”的方法。這有利于學生對知識進行主動建構;有利于突出重點、解決難點;也有利于發揮學生的創造性。

      (3)體現“等價轉化”、“數形結合”的思想方法。這樣可發揮學生的主觀能動性,有利于提高學生的各種能力。

      三.說學法指導

      教給學生方法比教給學生知識更重要,本節課注重調動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:觀察分析、聯想轉化、動手實驗、練習鞏固。

      (1)觀察分析:通過引例讓學生觀察化舊知為新知,造成學生認知沖突。

      (2)聯想轉化:學生通過分析、探索、得出解決問題的方法。

      (3)動手實驗:通過作圖、實驗、從而得出一般解題步驟。

      (4)練習鞏固:讓學生知道數學重在運用,從而檢驗知識的應用情況,找出未掌握的內容及其差距。

      四.說教學程序

      1、導入課題: 由一個不等式組表示平面區域轉化為在此平面區域內一二元一次數的最值問題,造成學生認知沖突。

      3、導學達標之一:創設情境、形成概念

      通過引例的問題讓學生探索解決新問題的方法。

      (設計意圖:利用已經學過的知識逐步分析,學以致用,使學生經歷數學知識的形成過程,從而提高學生數學的地提出、分析和解決問題的能力。)

      然后老師逐步引導,動手實驗,化抽象為直觀。從而得到解決此類問題的方法,并對比引例給出相關概念:線性約束條件、目標函數、線性目標函數、線性規劃、可行解、可行域、最優解。并能根據引例提煉線性規劃問題的解法——圖解法。

      (設計意圖:引導學生觀察和分析問題,激發學生的探索欲望,從而培養學生的解決問題和總結歸納的能力。)

      4.導學達標之二:針對問題、舉例講解、形成技能

      例一:課本61頁例3

      (創設意境:,練習是使學生明白數學來源于實際又運用于實際,同時使學生進初步應用線性規劃的圖解法解決一些實際問題。)

      6.鞏固目標:

      練習一:學生做課堂練習P64例4

      (叫學生提出解決問題的方法,并用多媒體展示,并根據問題的實際意義,考慮取值范圍。造成新的認知沖突,從而研究探索,得到整點最優解的一種求法。)

      練習二:為了賺大錢,老張最近承包了一家具廠,可老張卻悶悶不樂,原來家具廠有方木料90m3,五合板600m2,老張準備加工成書桌和書廚出售,他通過調查了解到:生產每張書桌需要方木料0.1m3、五合板2m2,生產每個書櫥需要方木料0.2m3、五合板1m2,出售一張書桌可獲利潤80元,出售一個書櫥可獲利潤120元。老張卻不知如何安排?(電腦顯示問題)

      (設計意圖:通過實際問題,激發學生興趣,培養學生的數學應用意識,力求學生能夠對現實生活中蘊含的一些數學模式進行思考和作出判斷。)

      7.歸納與小結:

      小結本課的主要學習內容是什么?(由師生共同來完成本課小結)

      (創設意境:讓學生參與小結,引導學生對所學知識進行反思,有利于加強學生記憶和形成良好的數學思維習慣)

      8.布置作業:

      P64. 2

      五.說板書設計

      板書設計為表格式,這樣的板書簡明清楚,重點突出,加深學生對重點知識的理解和掌握,同時便于記憶,有利于提高教學效果。

    【高中數學說課稿】相關文章:

    高中數學的說課稿04-19

    高中數學優秀說課稿03-08

    高中數學《集合》說課稿07-08

    高中數學《數列》說課稿01-18

    高中數學說課稿06-13

    高中數學數列說課稿06-07

    高中數學數列說課稿(優秀)07-16

    【優秀】高中數學說課稿03-01

    關于高中數學說課稿05-15

    高中數學說課稿(集合)06-17

    <address id="ousso"></address>
    <form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
    1. 日日做夜狠狠爱欧美黑人