高中數學說課稿范文集合八篇
作為一名教師,往往需要進行說課稿編寫工作,借助說課稿可以有效提高教學效率。那么大家知道正規的說課稿是怎么寫的嗎?下面是小編幫大家整理的高中數學說課稿8篇,歡迎閱讀與收藏。

高中數學說課稿 篇1
我說課的內容是高中數學第二冊(上冊)第七章《直線和圓的方程》中的第六節“曲線和方程”的第一課時,下面我的說課將從以下幾個方面進行闡述:
一、教材分析
教材的地位和作用
“曲線和方程”這節教材揭示了幾何中的形與代數中的數相統一的關系,為“作形判數”與“就數論形”的相互轉化開辟了途徑,這正體現了解析幾何這門課的基本思想,對全部解析幾何教學有著深遠的影響。學生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學習的入門之徑。如果以為學生不真正領悟曲線和方程的關系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個基本概念的教學,這不能不說是一種“舍本逐題”的偏見,應該認識到這節“曲線和方程”的開頭課是解析幾何教學的“重頭戲”!
根據以上分析,確立教學重點是:“曲線的方程”與“方程的曲線”的概念;難點是:怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程。
二、教學目標
根據教學大綱的要求以及本教材的地位和作用,結合高二學生的認知特點確定教學目標如下:
知識目標:
1、了解曲線上的點與方程的解之間的一一對應關系;
2、初步領會“曲線的方程”與“方程的曲線”的概念;
3、學會根據已有的情景資料找規律,進而分析、判斷、歸納結論;
4、強化“形”與“數”一致并相互轉化的思想方法。
能力目標:
1、通過直線方程的引入,加強學生對方程的解和曲線上的點的一一對應關系的認識;
2、在形成曲線和方程的概念的教學中,學生經歷觀察、分析、討論等數學活動過程,探索出結論,并能有條理的闡述自己的觀點;
3、能用所學知識理解新的概念,并能運用概念解決實際問題,從中體會轉化化歸的思想方法,提高思維品質,發展應用意識。
情感目標:
1、通過概念的引入,讓學生感受從特殊到一般的認知規律;
2、通過反例辨析和問題解決,培養合作交流、獨立思考等良好的個性品質,以及勇于批判、敢于創新的`科學精神。
三、重難點突破
“曲線的方程”與“方程的曲線”的概念是本節的重點,這是由于本節課是由直觀表象上升到抽象概念的過程,學生容易對定義中為什么要規定兩個關系產生困惑,原因是不理解兩者缺一都將擴大概念的外延。由于學生已經具備了用方程表示直線、拋物線等實際模型,積累了感性認識的基礎,所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學生對概念表述的嚴密性進行探索,自然地得出定義。為了強化其認識,又決定用集合相等的概念來解釋曲線和方程的對應關系,并以此為工具來分析實例,這將有助于學生的理解,有助于學生通其法,知其理。
怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程是本節的難點。因為學生在作業中容易犯想當然的錯誤,通常在由已知曲線建立方程的時候,不驗證方程的解為坐標的點在曲線上,就斷然得出所求的是曲線方程。這種現象在高考中也屢見不鮮。為了突破難點,本節課設計了三種層次的問題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線的方程。通過這些例題讓學生再一次體會“二者”缺一不可。
四、學情分析
此前,學生已知,在建立了直角坐標系后平面內的點和有序實數對之間建立了一一對應關系,已有了用方程(有時以函數式的形式出現)表示曲線的感性認識(特別是二元一次方程表示直線),現在要進一步研究平面內的曲線和含有兩個變數的方程之間的關系,是由直觀表象上升到抽象概念的過程,對學生有相當大的難度。學生在學習時容易產生的問題是,不理解“曲線上的點的坐標都是方程的解”和“以這個方程的解為坐標的點都是曲線上的點”這兩句話在揭示“曲線和方程”關系時各自所起的作用。本節課的教學目標也只能是初步領會,要求學生能答出曲線和方程間必須滿足兩個關系時才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實例指出兩個關系的區別。
高中數學說課稿 篇2
一、教材分析:
《向量的加法》是《必修》4第二章第二單元中“平面向量的線性運算”的第一節課。本節內容有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學習向量的減法運算及其幾何意義、向量的數乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在“平面向量”及“空間向量”中有很重要的地位。
二、學情分析:
學生在上節課中學習了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動,這是學習本節內容的基礎。學生對數的運算了如指掌,并且在物理中學過力的合成、位移的合成等矢量的加法,所以向量的加法可通過類比數的加法、以所學的物理模型為背景引入,這樣做有利于學生更好地理解向量加法的意義,準確把握兩個加法法則的特點。
三、教學目的:
1、通過對向量加法的探究,使學生掌握向量加法的概念,結合物理學實際理解向量加法的意義。能正確領會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。
2、在應用活動中,理解向量加法滿足交換律和結合律以及表述兩個運算律的幾何意義。掌握有特殊位置關系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。
3、通過本節的學習,培養學生類比、遷移、分類、歸納等數學方面的能力。
四、教學重、難點
重點:向量的加法法則。探究向量的加法法則并正確應用是本課的重點。兩個加法法則各有特點,聯系緊密,你中有我,我中有你,實質相同,但是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講內容,平行四邊形法則在本課中所占份量略少于三角形法則。
難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學生認識到三角形法則的實質是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構成三角形。
五、教學方法
本節采用以下教學方法:1、類比:由數的加法運算類比向量的加法運算。2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發現三角形法則適用于任意向量相加;通過圖形,觀察得出向量加法滿足交換律、結合律等,這些都體現探究式教學法的運用。3、講解與練習:對兩個法則特點的分析,例題都采取了引導與講解的方法,學生課堂完成教材中的練習。4、多媒體技術的運用,能直觀地表現向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。
六、數學思想的體現:
1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規定,這樣對任意向量的加法都做了討論,線索清楚。
2、類比思想:使之與數的加法進行類比,使學生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從對比中看出兩者的不同,效果較好。
3、歸納思想:主要體現在以下三個環節①學完平行四邊形法則和三角形法則后,歸納總結,對不共線向量相加,兩個法則都可以選用。②由共線向量的加法總結出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。③對向量加法的結合律和探討中,又使學生發現了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環節中的運用,使得學生對兩個加法法則,尤其是三角形法則的理解,步步深入。
七、教學過程:
1、回顧舊知:本節要進行向量的平移,且對向量加法分共線與不共線兩種情況,所以要復習向量、相等向量、共線向量等概念,這些都是新課學習中必要的知識鋪墊。
2、引入新課:
(1)平行四邊形法則的引入。
學生在物理學中雖然接觸過位移的合成,但是并沒有形成三角形法則的概念;而對平行四邊形法則學生已學過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,但是物理中力的合成是在有相同的作用點的條件下合成的,引入到數學中向量加法的平行四邊形法則,所給出的圖形也是現成的平行四邊形,而學生剛學完相等向量,對相等向量的概念還沒有深刻的認識,易產生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要通過講解例1,使學生認識到可以通過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。
設計意圖:本著從學生最熟悉、離學生最近的知識經驗為接入點,用學生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學生容易接受,也使學科間的滲透發揮了作用,加深了學生對向量加法的`平行四邊形法則的“起點相同”這一特點的認識,例1的講解使學生認識到當表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學生完成對平行四邊形法則理解真正到位。
(2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。
所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學生也起到了示例的作用。于是前面的例1還可以利用三角形法則來做。
這時,總結出兩個不共線向量求和時,平行四邊形法則與三角形法則都可以用。
設計意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學生從向何意義上認識到兩個法則之間的密切聯系,理解它們的實質,而且銜接自然,能夠使學生對比地得出兩個法則的特點與實質,并對兩個法則的特點有較深刻的印象。
(3)共線向量的加法
方向相同的兩個向量相加,對學生來說較易完成,“將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度。”引導學生分析作法,結果發現還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。
方向相反的兩個向量相加,對學生來說是個難點,首先從作圖上不知道怎樣做。但是學生學過有理數加法中的異號兩數相加:“異號兩數相加,用較大
的絕對值減去較小的絕對值,符號取絕對值較大的數的符號。”類比異號兩數相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由老師引導學生嘗試運用三角形法則去做,發現結論正確。
反思過程,學生自然會想到方向相同的兩個向量相加,類似于同號兩數相加。這說明兩個共線向量相加依然可用三角形法則 通過以上幾個環節的討論,可以作個簡單的小結:兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。
設計意圖:通過對共線向量加法的探討,拓寬了學生對三角形法則的認識,使得不同位置的向量相加都有了依據,并且采用類比的方法,使學生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,可以化解難點。
(4)向量加法的運算律
①交換律:交換律是利用平行四邊形法則的圖形,又結合三角
形法則得出,理解起來沒什么困難,再一次強化了學生對兩個法則特點及實質的認識。
②結合律:結合律是通過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結果相同。
接下來是對應的兩個練習,運用交換律與結合律計算向量的和。
設計意圖:運算律的引入給加法運算帶來方便,從后面的練習中學生能夠體會到這點。由結合律還使學生發現,多個向量相加,同樣可以運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最后一個向量的終點。這樣使學生明白,三角形法則適用于任意多個向量相加。
3、小結
先由學生小結,檢查學生對本課重要知識的認識,也給學生一個概括本節知識的機會,然后用課件展示小結內容,使學生印象更深。
(1)平行四邊形法則:起點相同,適用于不共線向量的求和。
(2)三角形法則首尾相接,適用于任意多個向量的求和。
(3)運算律
高中數學說課稿 篇3
說課:古典概型
麻城理工學校謝衛華
(一)教材地位及作用:本節課是高中數學(必修
3)第三章概率的第二節古典概型的第一課時,是在
隨機事件的概率之后,幾何概型之前,尚未學習排列組合的情況下教學的。古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。學好古典概型可以為其它概率的學習奠定基礎,同時有利于理解概率的概念,有利于計算一些事件的概率,有利于解釋生活中的一些問題。
根據本節課的地位和作用以及新課程標準的具體要求,制訂教學重點:理解古典概型的概念及利用古典概型求解隨機事件的概率;
根據本節課的內容,即尚未學習排列組合,以及學生的心理特點和認知水平,制定了教學難點:如何判斷一個試驗是否是古典概型,分清在一個古典概型中某隨機事件包含的基本事件的個數和試驗中基本事件的`總數。
(二)根據新課程標準,并結合學生心理發展的需求,以及人格、情感、價值觀的具體要求制訂教學目標:
1.知識與技能
(1)理解古典概型及其概率計算公式(2)會用列舉法計算一些隨機事件所含的基本事件數及事件發生的概率2.情感態度與價值觀
概率教學的核心問題是讓學生了解隨機現象與概率的意義,加強與實際生活的聯系,以科學的態度評價身邊的一些隨機現象。適當地增加學生合作學習交流的機會,盡量地讓學生自己舉出生活和學習中與古典概型有關的實例。使得學生在體會概率意義的同時,感受與他人合作的重要性以及初步形成實事求是地科學態度和鍥而不舍的求學精神
(三)教學方法:根據本節課的內容和學生的實際水平,通過模擬試驗讓學生理解古典概型的特征,觀
察類比各個試驗,歸納總結出古典概型的概率計算公式,體現了化歸的重要思想,掌握列舉法,學會運用數形結合、分類討論的思想解決概率的計算問題。
(四)教學過程:
一、提出問題引入新課:在課前,教師布置任務,以數學小組為單位,完成下面兩個模擬試驗:試驗一:拋擲一枚質地均勻的硬幣,分別記錄“正面朝上”和“反面朝上”的次數,要求每個數學小組至少完成20次(最好是整十數),最后由科代表匯總;
試驗二:拋擲一枚質地均勻的骰子,分別記錄“1點”、“2點”、“3點”、“4點”、“5點”和“6點”的次數,要求每個數學小組至少完成60次(最好是整十數),最后由科代表匯總。
教師最后匯總方法、結果和感受,并提出問題:1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?2.根據以前的學習,上述兩個模擬試驗的每個結果之間都有什么特點?
二、思考交流形成概念:學生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關特點加以說明,加深新概念的理解。我們把上述試驗中的隨機事件稱為基本事件,它是試驗的每一個可能結果。
基本事件有如下的兩個特點:(1)任何兩個基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。給出例題1,讓學生自行解決,從而進一步理解基本事件,然后讓學生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結得到的結論,(1)試驗中所有可能出現的基本事件只有有限個(有限性);(2)每個基本事件出現的可能性相等(等可能性)。我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱
古典概型。
三、觀察分析推導公式:教師提出問題:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?引導學生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率
結果,發現其中的聯系。實驗一中,出現正面朝上的概率與反面朝上的概率相等,即
1“出現正面朝上”所包含的基本事件的個數,試驗二中,出現各個點的概率相等,即
P(“出現正面朝上”)==
2基本事件的總數3“出現偶數點”所包含的基本事件的個數,根據上述兩則模擬試驗,可以概括總結出,古典
P(“出現偶數點”)==
6基本事件的總數
概型計算任何事件的
的理解,教師提問:在使用古典概型的概率公式時,應該注意什么?學生回答,教師歸納:應該注意,(1)要判斷該概率模型是不是古典概型;
(2)要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。
四、例題分析推廣應用:通過例題2及3,鞏固學生對已學知識的掌握,提高學生分析問題、解決問題的能力。讓學生明確決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。適時利用列表數形結合和分類討論等思想方法,既能形象直觀地列出基本事件的總數,又能做到列舉的不重不漏。
五、總結概括加深理解:學生小結歸納,不足的地方老師補充說明。使學生對本節課的知識有一個系統全面的認識,并把學過的相關知識有機地串聯起來,便于記憶和應用,也進一步升華了這節課所要表達的本質思想,讓學生的認知更上一層。
(五)布置作業P123練習1、2題(六)板書設計
3.2.13.2.1古典概型古典概型試驗一試驗二基本事件
古典概型概率
計算公式
例3列表
例1樹狀圖古典概型
例2
以上是我對《古典概型概型》這節課的理解和處理方法,歡迎各位專家朋友批評指正,謝謝!
說課教案:古典概型
麻城理工學校謝衛華
高中數學說課稿 篇4
敬的各位專家、評委:
下午好!
我的抽簽序號是____,今天我說課的課題是《_______》第__課時。
我嘗試利用新課標的理念來指導教學,對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。
一、教材分析
(一)地位與作用
______是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面______;另一方面______。同時,__________________。
(二)學情分析
(1)學生已熟練掌握_________________。
(2)學生的知識經驗較為豐富,具備了教強的抽象思維能力和演繹推理能力。
(3)學生思維活潑,積極性高,已初步形成對數學問題的合作探究能力。
(4) 學生層次參次不齊,個體差異比較明顯。
二、目標分析
新課標指出“三維目標”是一個密切聯系的有機整體,應該以獲得知識與技能的過程,同時成為學會學習和正確價值觀。這要求我們在教學中以知識技能的培養為主線,透情感態度與價值觀,并把這兩者充分體現在教學過程中,新課標指出教學的主體是學生,因此目標的制定和設計必須從學生的角度出發,根據____在教材內容中的地位與作用,結合學情分析,本節課教學應實現如下教學目標:
(一)教學目標
(1)知識與技能
使學生理解_______,初步掌握______。
(2)過程與方法
引導學生通過觀察、歸納、抽象、概括,______;能運用____解決簡單的問題;使學生領會______的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。
(3)情感態度與價值觀
在______的學習過程中,使學生體驗數學的科學價值和應用價值,培養學生善于觀察、勇于探索的良好習慣和嚴謹的科學態度。
(二)重點難點
本節課的教學重點是________________________,教學難點是_____________________。
三、教法、學法分析
(一)教法
基于本節課的內容特點和__學生的年齡特征,按照__市高中數學“三五四”課堂教學策略,采用探究――體驗教學法為主來完成教學,為了實現本節課的教學目標,在教法上我采取了:
1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發學生求知欲,調動學生主體參與的積極性.
2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念.
3、在鼓勵學生主體參與的`同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹的推理,并順利地完成書面表達.
(二)學法
在學法上我重視了:
1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。
2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和分析解決問題的能力。
四、教學過程分析
(一)教學過程設計
教學是一個教師的“導”,學生的“學”以及教學過程中的“悟”構成的和諧整體。教師的“導”也就是教師啟發、誘導、激勵、評價等為學生的學習搭建支架,把學習的任務轉移給學生,學生就是接受任務,探究問題、完成任務。如果在教學過程中把“教與學”完美的結合也就是以“問題”為核心,通過對知識的發生、發展和運用過程的演繹、解釋和探究來組織和推動教學。
(1)創設情境,提出問題。
新課標指出:“應該讓學生在具體生動的情境中學習數學”。在本節課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統目的明確的設計方式,給學生最大的思考空間,充分體現學生主體地位。
(2)引導探究,建構概念。
數學概念的形成來自解決實際問題和數學自身發展的需要.但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經驗和已有的知識基礎出發,經歷“數學化”、“再創造”的活動過程.
(3)自我嘗試,初步應用。
有效的數學學習過程,不能單純的模仿與記憶,數學思想的領悟和學習過程更是如此。讓學生在解題過程中親身經歷和實踐體驗,師生互動學習,生生合作交流,共同探究.
(4)當堂訓練,鞏固深化。
通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對知識識的再次深化。
(5)小結歸納,回顧反思。
小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。我設計了三個問題:(1)通過本節課的學習,你學到了哪些知識?(2)通過本節課的學習,你最大的體驗是什么?(3)通過本節課的學習,你掌握了哪些技能?
(二)作業設計
作業分為必做題和選做題,必做題對本節課學生知識水平的反饋,選做題是對本節課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展、合作探究的學習氛圍的形成.
我設計了以下作業:
(1)必做題
(2)選做題
(三)板書設計
板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。
五、評價分析
學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對____是否有一個完整的集訓,并進行及時的調整和補充。
以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。
謝謝!
高中數學說課稿 篇5
一、教材分析
本節是人教A版高中數學必修三第二章《統計》中的第三節 “變量間的相關關系” 的第二課時。在上一課時,學生已經懂得根據兩個相關變量的數據作出散點圖,并利用散點圖直觀認識變量間的相關關系。這節課是在上一節課的基礎上介紹了用線性回歸的方法研究兩個變量的相關性和最小二乘法的思想。
從全章的內容上看,線性回歸方程的建立不僅是本節的難點,也是本章內容的難點之一。線性回歸是最簡單的回歸分析,學好回歸分析是學好統計學的重要基礎。
二、教學目標
根據課標的要求及前面的分析,結合高二學生的認知特點確定本節課的教學目標如下:
知識與技能:
1. 知道最小二乘法和回歸分析的思想;
2. 能根據線性回歸方程系數公式求出回歸方程
過程與方法:
經歷線性回歸分析過程,借助圖形計算器得出回歸直線,增強數學應用和使用技術的意識。
情感態度與價值觀
通過合作學習,養成傾聽別人意見和建議的良好品質
三、重點難點分析:
根據目標分析,確定教學重點和難點如下:
教學重點:
1. 知道最小二乘法和回歸分析的思想;
2.會求回歸直線
教學難點:
建立回歸思想,會求回歸直線
四、教學設計
提出問題
理論探究
驗證結論
小結提升
應用實踐
作業設計
教學環節
內容及說明
創設情境
探究:在一次對人體脂肪含量和年齡關系的研究中,研究人員獲得了一組樣本數據:
問題與引導設計
師生活動
設計意圖
問題1. 利用圖形計算器作出散點圖,并指出上面的兩個變量是正相關還是負相關?
教師提問,學生
通過動手操作得
出散點圖并回答
以舊“探”新:對舊的知識進行簡要的提問復習,為本節課學生能夠更好的建構新的知識做好充分的準備;尤其為一些后進生能夠順利的完成本節課的內容提供必要的基礎。
教師引導:通過上節課的學習,我們知道散點圖是研究兩個變量相關關系的一種重要手段。下面,請同學們根據得出的散點圖,思考下面的'問題2.
問題2. 甲同學判斷某人年齡在65歲時體內脂肪含量百分比可能為34,乙同學判斷可能為25,而丙同學則判斷可能為37,你對甲,
乙,丙三個同學的判斷有什么看法?
學生能夠表達自己的看法。有的學生可能會認為乙同學的判斷是錯誤的;有的學生可能認為甲乙丙三個同學的判斷都是對的,答案不唯一
該問題具有探究性、啟發性和開放性。鼓勵學生大膽表達自己的看法。通過設計該問題,引導學生自己發現問題,注意到散點圖中點的分布具有一定規律,體會觀測點與回歸直線的關系;進而引起學生的對本節課內容的興趣。
問題3. 反思問題,你還可以提出哪些問題嗎?小組討論,看哪個小組提出的問題多
在小組討論的形式下和比較哪個小組提出的問題多,學生之間會充分的進行交流,提出問題
通過小組討論比較,調動學生的學習積極性和興趣,活躍課堂氣氛,達到學生自己提出問題的效果,培養學生的學生創新思維和問題意識。
學生可能提出的問題:
①為什么甲、丙同學的判斷結果正確的可能性較大,而乙同學判斷結果正確的可能性較小?
②某人年齡在65歲時體內脂肪含量百分比最可能是多少?在其它年齡時呢?
③這些樣本數據揭示出兩個相關變量之間怎樣的關系呢?
④怎樣用數學的方法研究變量之間的相關關系呢?每個問題都是學生“火熱的思考”成果
高中數學說課稿 篇6
一、教學內容分析
圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象.恰當地利用定義解題,許多時候能以簡馭繁.因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。
二、學生學習情況分析
我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。
三、設計思想
由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情.在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率.
四、教學目標
1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。
2.通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。
3.借助多媒體輔助教學,激發學習數學的興趣.
五、教學重點與難點:
教學重點
1.對圓錐曲線定義的理解
2.利用圓錐曲線的定義求“最值”
3.“定義法”求軌跡方程
教學難點:
巧用圓錐曲線定義解題
六、教學過程設計
【設計思路】
(一)開門見山,提出問題
一上課,我就直截了當地給出——
例題1:(1) 已知A(-2,0), B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是( )。
(A)橢圓 (B)雙曲線 (C)線段 (D)不存在
(2)已知動點 M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是( )。
(A)橢圓 (B)雙曲線 (C)拋物線 (D)兩條相交直線
【設計意圖】
定義是揭示概念內涵的邏輯方法,熟悉不同概念的`不同定義方式,是學習和研究數學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節課首先要弄清楚的問題。
為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。
【學情預設】
估計多數學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折—— 如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)2
5這樣,很快就能得出正確結果。如若不然,我將啟發他們從等式兩端的式子|3x4y|5
入手,考慮通過適當的變形,轉化為學生們熟知的兩個距離公式。
在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是 ,實軸長為 ,焦距為 。以深化對概念的理解。
(二)理解定義、解決問題
例2 (1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內切,求△ABC面積的最大值。
(2)在(1)的條件下,給定點P(-2,2), 求|PA|
七、教學反思
1.本課將借助于“XXX”,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的數學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結合的教學優勢。
2.利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養學生思維能力,使學生從學會一個問題的求解到掌握一類問題的解決方法. 循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”并為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量并不會小。
總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節奏仍是我今后工作中的一個重要研究課題.而要能真正進行素質教育,培養學生的創新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術,讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質,提高了數學思維能力。
高中數學說課稿 篇7
數學:人教A版必修3第二章第三節《變量之間的相關關系》說課稿各位老師:
大家好!我叫***,來自**。我說課的題目是《變量之間的相關關系》,內容選自于高中教材新課程人教A版必修3第二章第三節,課時安排為三個課時,本節課內容為第一課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析四大方面來闡述我對這節課的分析和設計:
一、教材分析
1.教材所處的地位和作用
本章我們所要學習的主要內容就是統計,在前面的章節中我們已經對統計的相關知識作了大致的了解。本節課我們要繼續探討的是變量之間的相關關系,它為接下來要學習的兩個變量的線性相關打下基礎。這是一個與現實實際生活聯系很緊密的知識,在教師的引導下,可使學生認識到在現實世界中存在不能用函數模型描述的變量關系,從而體會研究變量之間的相關關系的重要性.
2.教學的重點和難點
重點:①通過收集現實問題中兩個有關聯變量的數據直觀認識變量間的相關關系;
②利用散點圖直觀認識兩個變量之間的線性關系;
難點:①變量之間相關關系的理解;②作散點圖和理解兩個變量的正相關和負相關
二、教學目標分析
1.知識與技能目標
通過收集現實問題中兩個有關聯變量的數據認識變量間的相關關系
2、過程與方法目標:
明確事物間的相互聯系.認識現實生活中變量間除了存在確定的關系外,仍存在大量的非確定性的相關關系,并利用散點圖直觀體會這種相關關系.
3、情感態度與價值觀目標:
通過對事物之間相關關系的了解,讓學生們認識到現實中任何事物都是相互聯系的辯證法思想。
三、教學方法與手段分析
1.教學方法:結合本節課的教學內容和學生的認知水平,在教法上,我采用“問答探究”式的教學方法,層層深入。充分發揮教師的主導作用,讓學生真正成為教學活動的主體。
2。教學手段:通過多媒體輔助教學,充分調動學生參與課堂教學的主動性與積極性。
四、教學過程分析
㈠問題引出:
請同學們如實填寫下表(在空格中打“√”)
然后回答如下問題:①“你的數學成績對你的物理成績有無影響?”②“如果你的數學成績好,那么你的物理成績也不會太差,如果你的數學成績差,那么你的物理成績也不會太好。”對你來說,是這樣嗎?同意這種說法的同學請舉手。
根據同學們回答的結果,讓學生討論:我們可以發現自己的數學成績和物理成績存在某種關系。(似乎就是數學好的,物理也好;數學差的,物理也差,但又不全對。)教師總結如下:
物理成績和數學成績是兩個變量,從經驗看,由于物理學習要用到比較多的數學知識和數學方法。數學成績的高低對物理成績的高低是有一定影響的。但決非唯一因素,還
有其它因素,如圖所示(幻燈片給出):
因此,不能通過一個人的數學成績是多少就準確地斷定他的物理成績能達到多少。但這兩個變量是有一定關系的,它們之間是一種不確定性的.關系。如何通過數學成績的結果對物理成績進行合理估計有非常重要的現實意義。
「設計意圖」通過對身邊事例的分析,引出我們今天將要學習的主要內容,由此可以激起學
生們的學習興趣,為接下來的學習打下良好的基礎。
㈡探究新知
⒈概念形成
教師提問:“像剛才這種情況在現實生活中是否還有?”學生們思考之后,請幾位同學就提出的問題作出回答。老師就舉出的例子,引導學生作出分析,然后由老師總結得出相關關系的概念。[兩個變量之間的關系可能是確定的關系(如:函數關系),或非確定性關系。當自變量取值一定時,因變量也確定,則為確定關系;當自變量取值一定時,因變量帶有隨機性,這種變量之間的關系稱為相關關系。相關關系是一種非確定性關系。]
「設計意圖」從現實生活入手,抓住學生們的注意力,引導學生分析得出概念,讓學生真正參與到概念的形成過程中來。
⒉探究線性相關關系和其他相關關系
「課件展示」
例1在一次對人體脂肪和年齡關系的研究中,研究人員獲得了一組樣本數據:
問題:針對于上述數據所提供的信息,你認為人體的脂肪含量與年齡之間有怎樣的關系?
[教師特別向學生強調在研究兩個變量之間是否存在某種關系時,必須從散點圖入手(向學生介紹什么是散點圖)。并且引導學生從散點圖上可以得出如下規律:(幻燈片給出)
①如果所有的樣本點都落在某一函數曲線上,那么變量之間具有函數關系(確定性關系);②如果所有的樣本點都落在某一函數曲線的附近,那么變量之間具有相關關系(不確定性關系);③如果所有的樣本點都落在某一直線附近,那么變量之間具有線性相關關系(不確定性關系)。
「設計意圖」通過對這個典型事例的分析,向學生們介紹什么是散點圖,并總結出如何從散點圖上判斷變量之間關系的規律。
下面我們用TI圖形計算器作出這兩個變量的散點圖。
學生實驗:先把數據中成對出現的兩個數分別作為橫坐標、縱坐標,把數據輸入到表格當中(第一列橫坐標、第二列縱坐標);然后,用TI圖形計算器作散點圖:
[引導學生觀察作出的散點圖,體會現實生活中兩個變量之間的關系存在著不確定性。散點圖中的散點并不在一條直線上,只是分布在一條直線的周圍,即為線性相關關系。]
「設計意圖」通過實驗讓學生們感受散點圖的主要形成過程,并由此引出線性相關關系。為后面回歸直線和回歸直線方程的學習做好鋪墊。
「課件展示」四組數據,請學生作出散點圖,并觀察每組數據的特點。
根據四組數據,學生作出四個散點圖。
通過學生討論、交流、用TI圖形計算器展示、對比自己作出的散點圖,我們引出線性相關關系,正負相關關系的概念。
「設計意圖」及時鞏固知識,學生通過親自動手作散點圖,并交流討論,進一步加深對散點圖的理解,并由此引出正負相關關系的概念,突破難點。
㈢例題講解,深化認識
「課件展示」
例2一般說來,一個人的身高越高,他的人就越大,相應地,他的右手一拃長就越長,因此,人的身高與右手一拃長之間存在著一定的關系。為了對這個問題進行調查,我們收集了北京市某中學20xx年高三年級96名學生的身高與右手一拃長的數據如下表。
(1)根據上表中的數據,制成散點圖。你能從散點圖中發現身高與右手一拃長之間的近似關系嗎?
(2)如果近似成線性關系,請畫出一條直線來近似地表示這種線性關系。
(3)如果一個學生的身高是188cm,你能估計他的一拃大概有多長嗎?
「設計意圖」這個例子很容易激起學生們的學習興趣,由此可達到更好的教學效果。通過對這道題的解答,使對前面知識的認識更加牢固。
㈣反思小結、培養能力
⑴變量間相關關系、線性關系和正負相關關系
⑵如何做散點圖
「設計意圖」小節是一堂課的概括和總結,有利于優化學生的認知結構,把課堂教學傳授的知識較快轉化為學生的素質,也更進一步培養學生的歸納概括能力
㈤課后作業,自主學習
習題2.31、2
[設計意圖]課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度,并促使學生進一步鞏固和掌握所學內容。
高中數學說課稿 篇8
一、教學目標
(一)知識與技能
1、進一步熟練掌握求動點軌跡方程的基本方法。
2、體會數學實驗的直觀性、有效性,提高幾何畫板的操作能力。
(二)過程與方法
1、培養學生觀察能力、抽象概括能力及創新能力。
2、體會感性到理性、形象到抽象的思維過程。
3、強化類比、聯想的方法,領會方程、數形結合等思想。
(三)情感態度價值觀
1、感受動點軌跡的.動態美、和諧美、對稱美。
2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發提出問題和解決問題的勇氣。
二、教學重點與難點
教學重點:運用類比、聯想的方法探究不同條件下的軌跡。
教學難點:圖形、文字、符號三種語言之間的過渡。
三、、教學方法和手段
教學方法:觀察發現、啟發引導、合作探究相結合的教學方法。啟發引導學生積極思考并對學生的思維進行調控,幫助學生優化思維過程,在此基礎上,提供給學生交流的機會,幫助學生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數學思維。
教學手段:利用網絡教室,四人一機,多媒體教學手段。通過上述教學手段,一方面:再現知識產生的過程,通過多媒體動態演示,突破學生在舊知和新知形成過程中的障礙(靜態到動態);另一方面:節省了時間,提高了課堂教學的效率,激發了學生學習的興趣。
教學模式:重點中學實施素質教育的課堂模式“創設情境、激發情感、主動發現、主動發展”。
四、教學過程
1、創設情景,引入課題
生活中我們四處可見軌跡曲線的影子。
演示:這是美麗的城市夜景圖。
演示:許多人認為天體運行的軌跡都是圓錐曲線,研究表明,天體數目越多,軌跡種類也越多。
演示建筑中也有許多美麗的軌跡曲線。
設計意圖:讓學生感受數學就在我們身邊,感受軌跡,曲線的動態美、和諧美、對稱美,激發學習興趣。
2、激發情感,引導探索
靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優美的曲線飛出去呢?我們把這個問題轉化為數學問題就是新教材高二上冊88頁20題,也就是這里的例題1。
【高中數學說課稿】相關文章:
高中數學的說課稿04-19
高中數學優秀說課稿03-08
高中數學說課稿06-12
高中數學《數列》說課稿01-18
高中數學說課稿06-13
高中數學數列說課稿06-07
高中數學全套說課稿06-08
高中數學說課稿(薦)04-03
高中數學說課稿(集合)06-17
高中數學數列說課稿(優秀)07-16