<address id="ousso"></address>
<form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
  1. 高中數學說課稿

    時間:2025-05-15 07:30:35 高中說課稿 我要投稿

    關于高中數學說課稿

      作為一名默默奉獻的教育工作者,通常需要準備好一份說課稿,借助說課稿可以讓教學工作更科學化。那么你有了解過說課稿嗎?下面是小編精心整理的關于高中數學說課稿,僅供參考,大家一起來看看吧。

    關于高中數學說課稿

    關于高中數學說課稿1

      說課內容:普通高中課程標準實驗教科書(人教A版)《數學必修4》第二章第四節“平面向量的數量積”的第一課時---平面向量數量積的物理背景及其含義。

      下面,我從背景分析、教學目標設計、課堂結構設計、教學過程設計、教學媒體設計及教學評價設計六個方面對本節課的思考進行說明。

      一、 背景分析

      1、學習任務分析

      平面向量的數量積是繼向量的線性運算之后的又一重要運算,也是高中數學的一個重要概念,在數學、物理等學科中應用十分廣泛。本節內容教材共安排兩課時,其中第一課時主要研究數量積的概念,第二課時主要研究數量積的坐標運算,本節課是第一課時。

      本節課的主要學習任務是通過物理中“功”的事例抽象出平面向量數量積的概念,在此基礎上探究數量積的性質與運算律,使學生體會類比的思想方法,進一步培養學生的抽象概括和推理論證的能力。其中數量積的概念既是對物理背景的抽象,又是研究性質和運算律的基礎。同時也因為在這個概念中,既有長度又有角度,既有形又有數,是代數、幾何與三角的最佳結合點,不僅應用廣泛,而且很好的體現了數形結合的數學思想,使得數量積的概念成為本節課的核心概念,自然也是本節課教學的重點。

      2、學生情況分析

      學生在學習本節內容之前,已熟知了實數的運算體系,掌握了向量的概念及其線性運算,具備了功等物理知識,并且初步體會了研究向量運算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再從概念出發,在與實數運算類比的基礎上研究性質和運算律。這為學生學習數量積做了很好的鋪墊,使學生倍感親切。但也正是這些干擾了學生對數量積概念的理解,一方面,相對于線性運算而言,數量積的結果發生了本質的變化,兩個有形有數的向量經過數量積運算后,形卻消失了,學生對這一點是很難接受的;另一方面,由于受實數乘法運算的影響,也會造成學生對數量積理解上的偏差,特別是對性質和運算律的理解。因而本節課教學的難點數量積的概念。

      二、 教學目標設計

      《普通高中數學課程標準(實驗)》 對本節課的要求有以下三條:

      (1)通過物理中“功”等事例,理解平面向量數量積的含義及其物理意義。

      (2)體會平面向量的數量積與向量投影的關系。

      (3)能用運數量積表示兩個向量的夾角,會用數量積判斷兩個平面向量的垂直關系。

      從以上的背景分析可以看出,數量積的概念既是本節課的重點,也是難點。為了突破這一難點,首先無論是在概念的引入還是應用過程中,物理中“功”的實例都發揮了重要作用。其次,作為數量積概念延伸的性質和運算律,不僅能夠使學生更加全面深刻地理解概念,同時也是進行相關計算和判斷的理論依據。最后,無論是數量積的性質還是運算律,都希望學生在類比的基礎上,通過主動探究來發現,因而對培養學生的抽象概括能力、推理論證能力和類比思想都無疑是很好的載體。

      綜上所述,結合“課標”要求和學生實際,我將本節課的教學目標定為:

      1、了解平面向量數量積的物理背景,理解數量積的含義及其物理意義;

      2、體會平面向量的數量積與向量投影的關系,掌握數量積的性質和運算律,

      并能運用性質和運算律進行相關的運算和判斷;

      3、體會類比的數學思想和方法,進一步培養學生抽象概括、推理論證的能力。

      三、課堂結構設計

      本節課從總體上講是一節概念教學,依據數學課程改革應關注知識的發生和發展過程的理念,結合本節課的知識的邏輯關系,我按照以下順序安排本節課的教學:

      即先從數學和物理兩個角度創設問題情景,通過歸納和抽象得到數量積的概念,在此基礎上研究數量積的性質和運算律,使學生進一步加深對概念的理解,然后通過例題和練習使學生鞏固概念,加深印象,最后通過課堂小結提高學生認識,形成知識體系。

      四、 教學媒體設計

      和“大綱”教材相比,“課標”教材在本節課的內容安排上,雖然將向量的夾角在“平面向量基本定理”一節提前做了介紹,但卻將原來分兩節課完成的內容合并成一節,相比較而言本節課的教學任務加重了許多。為了保證教學任務的完成,順利實現本節課的教學目標,考慮到本節課的實際特點,在教學媒體的使用上,我的設想主要有以下兩點:

      1、制作高效實用的電腦多媒體課件,主要作用是改變相關內容的呈現方式,以此來節約課時,增加課堂容量。

      2、設計科學合理的板書(見下),一方面使學生加深對主要知識的印象,另一方面使學生清楚本節內容知識間的邏輯關系,形成知識網絡。

      平面向量數量積的物理背景及其含義

      一、 數量積的概念 二、數量積的性質 四、應用與提高

      1、 概念: 例1:

      2、 概念強調 (1)記法 例2:

      (2)“規定” 三、數量積的運算律 例3:

      3、幾何意義:

      4、物理意義:

      五、 教學過程設計

      課標指出:數學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發展的過程。為有序、有效地進行教學,本節課我主要安排以下六個活動:

      活動一:創設問題情景,激發學習興趣

      正如教材主編寄語所言,數學是自然的,而不是強加于人的。平面向量的數量積這一重要概念,和向量的`線性運算一樣,也有其數學背景和物理背景,為了體現這一點,我設計以下幾個問題:

      問題1:我們已經研究了向量的哪些運算?這些運算的結果是什么?

      問題2:我們是怎么引入向量的加法運算的?我們又是按照怎樣的順序研究了這種運算的?

      期望學生回答:物理模型→概念→性質→運算律→應用

      問題3:如圖所示,一物體在力F的作用下產生位移S,

      (1)力F所做的功W= 。

      (2)請同學們分析這個公式的特點:

      W(功)是 量,

      F(力)是 量,

      S(位移)是 量,

      α是 。

      問題1的設計意圖在于使學生了解數量積的數學背景,讓學生明白本節課所要研究的數量積與向量的加法、減法及數乘一樣,都是向量的運算,但與向量的線性運算相比,數量積運算又有其特殊性,那就是其結果發生了本質的變化。

      問題2的設計意圖在于使學生在與向量加法類比的基礎上明了本節課的研究方法和順序,為教學活動指明方向。

      問題3的設計意圖在于使學生了解數量積的物理背景,讓學生知道,我們研究數量積絕不僅僅是為了數學自身的完善,而是有其客觀背景和現實意義的,從而產生了進一步研究這種新運算的愿望。同時,也為抽象數量積的概念做好鋪墊。

      活動二:探究數量積的概念

      1、概念的抽象

      在分析“功”的計算公式的基礎上提出問題4

      問題4:你能用文字語言來表述功的計算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結果又該如何表述?

      學生通過思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個向量的大小及其夾角余弦的乘積。這樣,學生事實上已經得到數量積概念的文字表述了,在此基礎上,我進一步明晰數量積的概念。

      2、概念的明晰

      已知兩個非零向量

      與

      ,它們的夾角為

      ,我們把數量 ︱

      ︱·︱

      ︱cos

      叫做

      與

      的數量積(或內積),記作:

      ·

      ,即:

      ·

      = ︱

      ︱·︱

      ︱cos

      在強調記法和“規定”后 ,為了讓學生進一步認識這一概念,提出問題5

      問題5:向量的數量積運算與線性運算的結果有什么不同?影響數量積大小的因素有哪些?并完成下表:

      角

      的范圍0°≤

      <90°

      =90°0°<

      ≤180°

      ·

      的符號

      通過此環節不僅使學生認識到數量積的結果與線性運算的結果有著本質的不同,而且認識到向量的夾角是決定數量積結果的重要因素,為下面更好地理解數量積的性質和運算律做好鋪墊。

      3、探究數量積的幾何意義

      這個問題教材是這樣安排的:在給出向量數量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運算律的第三條才直接以結論的形式呈現給學生,我覺得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學生自己歸納得出,所以做了調整。為此,我首先給出給出向量投影的概念,然后提出問題5。

      如圖,我們把│

      │cos

      (│

      │cos

      )叫做向量

      在

      方向上(

      在

      方向上)的投影,記做:OB1=│

      │cos

      問題6:數量積的幾何意義是什么?

      這樣做不僅讓學生從“形”的角度重新認識數量積的概念,從中體會數量積與向量投影的關系,同時也更符合知識的連貫性,而且也節約了課時。

      4、研究數量積的物理意義

      數量積的概念是由物理中功的概念引出的,學習了數量積的概念后,學生就會明白功的數學本質就是力與位移的數量積。為此,我設計以下問題 一方面使學生嘗試計算數量積,另一方面使學生理解數量積的物理意義,同時也為數量積的性質埋下伏筆。

      問題7:

      (1) 請同學們用一句話來概括功的數學本質:功是力與位移的數量積 。

      (2)嘗試練習:一物體質量是10千克,分別做以下運動:

      ①、在水平面上位移為10米;

      ②、豎直下降10米;

      ③、豎直向上提升10米;

      ④、沿傾角為30度的斜面向上運動10米;

      分別求重力做的功。

      活動三:探究數量積的運算性質

      1、性質的發現

      教材中關于數量積的三條性質是以探究的形式出現的,為了很好地完成這一探究活動,在完成上述練習后,我不失時機地提出問題8:

      (1)將嘗試練習中的① ② ③的結論推廣到一般向量,你能得到哪些結論?

      (2)比較︱

      ·

      ︱與︱

      ︱×︱

      ︱的大小,你有什么結論?

      在學生討論交流的基礎上,教師進一步明晰數量積的性質,然后再由學生利用數量積的定義給予證明,完成探究活動。

      2、明晰數量積的性質

      3、性質的證明

      這樣設計體現了教師只是教學活動的引領者,而學生才是學習活動的主體,讓學生成為學習的研究者,不斷地體驗到成功的喜悅,激發學生參與學習活動的熱情,不僅使學生獲得了知識,更培養了學生由特殊到一般的思維品質。

      活動四:探究數量積的運算律

      1、運算律的發現

      關于運算律,教材仍然是以探究的形式出現,為此,首先提出問題9

      問題9:我們學過了實數乘法的哪些運算律?這些運算律對向量是否也適用?

      通過此問題主要是想使學生在類比的基礎上,猜測提出數量積的運算律。

      學生可能會提出以下猜測: ①

      ·

      =

      ·

      ②(

      ·

      )

      =

      (

      ·

      ) ③(

      +

      )·

      =

      ·

      +

      ·

      猜測①的正確性是顯而易見的。

      關于猜測②的正確性,我提示學生思考下面的問題:

      猜測②的左右兩邊的結果各是什么?它們一定相等嗎?

      學生通過討論不難發現,猜測②是不正確的。

      這時教師在肯定猜測③的基礎上明晰數量積的運算律:

      2、明晰數量積的運算律

      3、證明運算律

      學生獨立證明運算律(2)

      我把運算運算律(2)的證明交給學生完成,在證明時,學生可能只考慮到λ>0的情況,為了幫助學生完善證明,提出以下問題:

      當λ<0時,向量

      與λ

      ,

      與λ

      的方向 的關系如何?此時,向量λ

      與

      及

      與λ

      的夾角與向量

      與

      的夾角相等嗎?

      師生共同證明運算律(3)

      運算律(3)的證明對學生來說是比較困難的,為了節約課時,這個證明由師生共同完成,我想這也是教材的本意。

      在這個環節中,我仍然是首先為學生創設情景,讓學生在類比的基礎上進行猜想歸納,然后教師明晰結論,最后再完成證明,這樣做不僅培養了學生推理論證的能力,同時也增強了學生類比創新的意識,將知識的獲得和能力的培養有機的結合在一起。

      活動五:應用與提高

      例1、(師生共同完成)已知︱

      ︱=6,︱

      ︱=4,

      與

      的夾角為60°,求

      (

      +2

      )·(

      -3

      ),并思考此運算過程類似于哪種運算?

      例2、(學生獨立完成)對任意向量

      ,b是否有以下結論:

      (1)(

      +

      )2=

      2+2

      ·

      +

      2

      (2)(

      +

      )·(

      -

      )=

      2—

      2

      例3、(師生共同完成)已知︱

      ︱=3,︱

      ︱=4, 且

      與

      不共線,k為何值時,向量

      +k

      與

      -k

      互相垂直?并思考:通過本題你有什么收獲?

      本節教材共安排了四道例題,我根據學生實際選擇了其中的三道,并對例1和例3增加了題后反思。例1是數量積的性質和運算律的綜合應用,教學時,我重點從對運算原理的分析和運算過程的規范書寫兩個方面加強示范。完成計算后,進一步提出問題:此運算過程類似于哪種運算?目的是想讓學生在類比多項式乘法的基礎上自己猜測提出例2給出的兩個公式,再由學生獨立完成證明,一方面這并不困難,另一方面培養了學生通過類比這一思維模式達到創新的目的。例3的主要作用是,在繼續鞏固性質和運算律的同時,教給學生如何利用數量積來判斷兩個向量的垂直,是平面向量數量積的基本應用之一,教學時重點給學生分析數與形的轉化原理。

      為了使學生更好的理解數量積的含義,熟練掌握性質及運算律,并能夠應用數量積解決有關問題,再安排如下練習:

      1、 下列兩個命題正確嗎?為什么?

      ①、若

      ≠0,則對任一非零向量

      ,有

      ·

      ≠0.

      ②、若

      ≠0,

      ·

      =

      ·

      ,則

      =

      .

      2、已知△ABC中,

      =

      ,

      =

      ,當

      ·

      <0或

      ·

      =0時,試判斷△ABC的形狀。

      安排練習1的主要目的是,使學生在與實數乘法比較的基礎上全面認識數量積這一重要運算,

      通過練習2使學生學會用數量積表示兩個向量的夾角,進一步感受數量積的應用價值。

      活動六:小結提升與作業布置

      1、本節課我們學習的主要內容是什么?

      2、平面向量數量積的兩個基本應用是什么?

      3、我們是按照怎樣的思維模式進行概念的歸納和性質的探究?在運算律的探究過程中,滲透了哪些數學思想?

      4、類比向量的線性運算,我們還應該怎樣研究數量積?

      通過上述問題,使學生不僅對本節課的知識、技能及方法有了更加全面深刻的認識,同時也為下

      一節做好鋪墊,繼續激發學生的求知欲。

      布置作業:

      1、課本P121習題2.4A組1、2、3。

      2、拓展與提高:

      已知

      與

      都是非零向量,且

      +3

      與7

      -5

      垂直,

      -4

      與 7

      -2

      垂直求

      與

      的夾角。

      在這個環節中,我首先考慮檢測全體學生是否都達到了“課標”的基本要求,因此安排了一組教材中的習題,目的是讓所有的學生繼續加深對數量積概念的理解和應用,為后續學習打好基礎。其次,為了能讓不同的學生在數學領域得到不同的發展,我又安排了一道有一定難度的問題供學有余力的同學選做。

      六、教學評價設計

      評價方式的轉變是新課程改革的一大亮點,課標指出:相對于結果,過程更能反映每個學生的發展變化,體現出學生成長的歷程。因此,數學學習的評價既要重視結果,也要重視過程。結合“課標”對數學學習的評價建議,對本節課的教學我主要通過以下幾種方式進行:

      1、 通過與學生的問答交流,發現其思維過程,在鼓勵的基礎上,糾正偏差,并對其進行定

      性的評價。

      2、在學生討論、交流、協作時,教師通過觀察,就個別或整體參與活動的態度和表現做出評價,以此來調動學生參與活動的積極性。

      3、 通過練習來檢驗學生學習的效果,并在講評中,肯定優點,指出不足。

      4、 通過作業,反饋信息,再次對本節課做出評價,以便查漏補缺。

    關于高中數學說課稿2

      一、教材分析:

      《向量的加法》是《必修》4第二章第二單元中“平面向量的線性運算”的第一節課。本節內容有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學習向量的減法運算及其幾何意義、向量的數乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在“平面向量”及“空間向量”中有很重要的地位。

      二、學情分析:

      學生在上節課中學習了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動,這是學習本節內容的基礎。學生對數的運算了如指掌,并且在物理中學過力的合成、位移的合成等矢量的加法,所以向量的加法可通過類比數的加法、以所學的物理模型為背景引入,這樣做有利于學生更好地理解向量加法的意義,準確把握兩個加法法則的特點。

      三、教學目的:

      1、通過對向量加法的探究,使學生掌握向量加法的概念,結合物理學實際理解向量加法的意義。能正確領會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。

      2、在應用活動中,理解向量加法滿足交換律和結合律以及表述兩個運算律的幾何意義。掌握有特殊位置關系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。

      3、通過本節的學習,培養學生類比、遷移、分類、歸納等數學方面的能力。

      四、教學重、難點

      重點:向量的加法法則。探究向量的加法法則并正確應用是本課的重點。兩個加法法則各有特點,聯系緊密,你中有我,我中有你,實質相同,但是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講內容,平行四邊形法則在本課中所占份量略少于三角形法則。

      難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學生認識到三角形法則的實質是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構成三角形。

      五、教學方法

      本節采用以下教學方法:1、類比:由數的加法運算類比向量的加法運算。2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發現三角形法則適用于任意向量相加;通過圖形,觀察得出向量加法滿足交換律、結合律等,這些都體現探究式教學法的運用。3、講解與練習:對兩個法則特點的分析,例題都采取了引導與講解的方法,學生課堂完成教材中的練習。4、多媒體技術的運用,能直觀地表現向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。

      六、數學思想的體現:

      1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規定,這樣對任意向量的加法都做了討論,線索清楚。

      2、類比思想:使之與數的加法進行類比,使學生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從對比中看出兩者的不同,效果較好。

      3、歸納思想:主要體現在以下三個環節①學完平行四邊形法則和三角形法則后,歸納總結,對不共線向量相加,兩個法則都可以選用。②由共線向量的加法總結出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。③對向量加法的結合律和探討中,又使學生發現了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環節中的運用,使得學生對兩個加法法則,尤其是三角形法則的理解,步步深入。

      七、教學過程:

      1、回顧舊知:本節要進行向量的平移,且對向量加法分共線與不共線兩種情況,所以要復習向量、相等向量、共線向量等概念,這些都是新課學習中必要的知識鋪墊。

      2、引入新課:

      (1)平行四邊形法則的引入。

      學生在物理學中雖然接觸過位移的合成,但是并沒有形成三角形法則的概念;而對平行四邊形法則學生已學過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,但是物理中力的合成是在有相同的作用點的條件下合成的,引入到數學中向量加法的平行四邊形法則,所給出的圖形也是現成的平行四邊形,而學生剛學完相等向量,對相等向量的概念還沒有深刻的認識,易產生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要通過講解例1,使學生認識到可以通過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。

      設計意圖:本著從學生最熟悉、離學生最近的知識經驗為接入點,用學生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學生容易接受,也使學科間的滲透發揮了作用,加深了學生對向量加法的.平行四邊形法則的“起點相同”這一特點的認識,例1的講解使學生認識到當表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學生完成對平行四邊形法則理解真正到位。

      (2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。

      所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學生也起到了示例的作用。于是前面的例1還可以利用三角形法則來做。

      這時,總結出兩個不共線向量求和時,平行四邊形法則與三角形法則都可以用。

      設計意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學生從向何意義上認識到兩個法則之間的密切聯系,理解它們的實質,而且銜接自然,能夠使學生對比地得出兩個法則的特點與實質,并對兩個法則的特點有較深刻的印象。

      (3)共線向量的加法

      方向相同的兩個向量相加,對學生來說較易完成,“將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度。”引導學生分析作法,結果發現還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。

      方向相反的兩個向量相加,對學生來說是個難點,首先從作圖上不知道怎樣做。但是學生學過有理數加法中的異號兩數相加:“異號兩數相加,用較大

      的絕對值減去較小的絕對值,符號取絕對值較大的數的符號。”類比異號兩數相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由老師引導學生嘗試運用三角形法則去做,發現結論正確。

      反思過程,學生自然會想到方向相同的兩個向量相加,類似于同號兩數相加。這說明兩個共線向量相加依然可用三角形法則 通過以上幾個環節的討論,可以作個簡單的小結:兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。

      設計意圖:通過對共線向量加法的探討,拓寬了學生對三角形法則的認識,使得不同位置的向量相加都有了依據,并且采用類比的方法,使學生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,可以化解難點。

      (4)向量加法的運算律

      ①交換律:交換律是利用平行四邊形法則的圖形,又結合三角

      形法則得出,理解起來沒什么困難,再一次強化了學生對兩個法則特點及實質的認識。

      ②結合律:結合律是通過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結果相同。

      接下來是對應的兩個練習,運用交換律與結合律計算向量的和。

      設計意圖:運算律的引入給加法運算帶來方便,從后面的練習中學生能夠體會到這點。由結合律還使學生發現,多個向量相加,同樣可以運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最后一個向量的終點。這樣使學生明白,三角形法則適用于任意多個向量相加。

      3、小結

      先由學生小結,檢查學生對本課重要知識的認識,也給學生一個概括本節知識的機會,然后用課件展示小結內容,使學生印象更深。

      (1)平行四邊形法則:起點相同,適用于不共線向量的求和。

      (2)三角形法則首尾相接,適用于任意多個向量的求和。

      (3)運算律

    關于高中數學說課稿3

      1、本節教材的地位與作用

      本節主要研究閉區間上的連續函數最大值和最小值的求法和實際應用,分兩課時,這里是第一課時,它是在學生已經會求某些函數的最值,并且已經掌握了性質:“如果f(x)是閉區間[a,b]上的連續函數,那么f(x)在閉區間[a,b]上有最大值和最小值”,以及會求可導函數的極值之后進行學習的,學好這一節,學生將會求更多的函數的最值,運用本節知識可以解決科技、經濟、社會中的一些如何使成本最低、產量最高、效益最大等實際問題。這節課集中體現了數形結合、理論聯系實際等重要的數學思想方法,學好本節,對于進一步完善學生的知識結構,培養學生用數學的意識都具有極為重要的意義。

      2、教學重點

      會求閉區間上連續開區間上可導的函數的最值。

      3、教學難點

      高三年級學生雖然已經具有一定的知識基礎,但由于對求函數極值還不熟練,特別是對優化解題過程依據的理解會有較大的困難,所以這節課的難點是理解確定函數最值的方法。

      4、教學關鍵

      本節課突破難點的關鍵是:理解方程f′(x)=0的解,包含有指定區間內全部可能的極值點。

      【教學目標】

      根據本節教材在高中數學知識體系中的地位和作用,結合學生已有的認知水平,制定本節如下的教學目標:

      1、知識和技能目標

      (1)理解函數的最值與極值的區別和聯系。

      (2)進一步明確閉區間[a,b]上的連續函數f(x),在[a,b]上必有最大、最小值。

      (3)掌握用導數法求上述函數的最大值與最小值的方法和步驟。

      2、過程和方法目標

      (1)了解開區間內的連續函數或閉區間上的不連續函數不一定有最大、最小值。

      (2)理解閉區間上的連續函數最值存在的可能位置:極值點處或區間端點處。

      (3)會求閉區間上連續,開區間內可導的函數的最大、最小值。

      3、情感和價值目標

      (1)認識事物之間的的區別和聯系。

      (2)培養學生觀察事物的能力,能夠自己發現問題,分析問題并最終解決問題。

      (3)提高學生的數學能力,培養學生的.創新精神、實踐能力和理性精神。

      【教法選擇】

      根據皮亞杰的建構主義認識論,知識是個體在與環境相互作用的過程中逐漸建構的結果,而認識則是起源于主客體之間的相互作用。

      本節課在幫助學生回顧肯定了閉區間上的連續函數一定存在最大值和最小值之后,引導學生通過觀察閉區間內的連續函數的幾個圖象,自己歸納、總結出函數最大值、最小值存在的可能位置,進而探索出函數最大值、最小值求解的方法與步驟,并優化解題過程,讓學生主動地獲得知識,老師只是進行適當的引導,而不進行全部的灌輸。為突出重點,突破難點,這節課主要選擇以合作探究式教學法組織教學。

      【學法指導】

      對于求函數的最值,高三學生已經具備了良好的知識基礎,剩下的問題就是有沒有一種更一般的方法,能運用于更多更復雜函數的求最值問題?教學設計中注意激發起學生強烈的求知欲望,使得他們能積極主動地觀察、分析、歸納,以形成認識,參與到課堂活動中,充分發揮他們作為認知主體的作用。

      【教學過程】

      本節課的教學,大致按照“創設情境,鋪墊導入——合作學習,探索新知——指導應用,鼓勵創新——歸納小結,反饋回授”四個環節進行組織。

    關于高中數學說課稿4

      一、教材分析

      1、從在教材中的地位與作用來看

      《等比數列的前n項和》是數列這一章中的一個重要內容,它不僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數學素養。

      2、從學生認知角度看

      從學生的思維特點看,很容易把本節內容與等差數列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導。不利因素是:本節公式的推導與等差數列前n項和公式的推導有著本質的不同,這對學生的思維是一個突破,另外,對于q=1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。

      3、學情分析

      教學對象是剛進入高中的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹。

      4、重點、難點

      教學重點:公式的推導、公式的特點和公式的運用。

      教學難點:公式的推導方法和公式的靈活運用。

      公式推導所使用的"錯位相減法"是高中數學數列求和方法中最常用的方法之一,它蘊含了重要的數學思想,所以既是重點也是難點。

      二、目標分析

      知識與技能目標:

      理解并掌握等比數列前n項和公式的推導過程、公式的特點,在此基礎上能初步應用公式解決與之有關的問題。

      過程與方法目標:

      通過對公式推導方法的探索與發現,向學生滲透特殊到一般、類比與轉

      化、分類討論等數學思想,培養學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。

      情感與態度價值觀:

      通過對公式推導方法的探索與發現,優化學生的思維品質,滲透事物之間等價轉化和理論聯系實際的辯證唯物主義觀點。

      三、過程分析

      學生是認知的主體,設計教學過程必須遵循學生的認知規律,盡可能地讓學生去經歷知識的形成與發展過程,結合本節課的特點,我設計了如下的教學過程:

      1、創設情境,提出問題

      在古印度,有個名叫西薩的人,發明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數學家計算,結果出來后,國王大吃一驚。為什么呢?

      設計意圖:設計這個情境目的是在引入課題的同時激發學生的興趣,調動學習的積極性。故事內容緊扣本節課的主題與重點。

      此時我問:同學們,你們知道西薩要的是多少粒小麥嗎?引導學生寫出麥粒總數。帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。

      設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的"無用功",急急忙忙地拋出"錯位相減法",這樣做有悖學生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學關鍵處學生難以轉過彎來,因而在教學中應舍得花時間營造知識形成過程的氛圍,突破學生學習的障礙。同時,形成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆、

      2、師生互動,探究問題

      在肯定他們的思路后,我接著問:1,2,22,.....,263是什么數列?有何特征?應歸結為什么數學問題呢?

      探討1:,記為(1)式,注意觀察每一項的特征,有何聯系?(學生會發現,后一項都是前一項的2倍)

      探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發現?

      設計意圖:留出時間讓學生充分地比較,等比數列前n項和的公式推導關鍵是變"加"為"減",在教師看來這是"天經地義"的,但在學生看來卻是"不可思議"的,因此教學中應著力在這兒做文章,從而抓住培養學生的辯證思維能力的良好契機。

      經過比較、研究,學生發現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。老師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?

      設計意圖:經過繁難的計算之苦后,突然發現上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數學的興趣和學好數學的信心。

      3、類比聯想,解決問題

      這時我再順勢引導學生將結論一般化,

      這里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導。

      設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感。

      對不對?這里的q能不能等于1?等比數列中的公比能不能為1?q=1時是什么數列?此時sn=?(這里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎。)

      再次追問:結合等比數列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來?(引導學生得出公式的另一形式)

      設計意圖:通過反問精講,一方面使學生加深對知識的認識,完善知識結構,另一方面使學生由簡單地模仿和接受,變為對知識的主動認識,從而進一步提高分析、類比和綜合的能力。這一環節非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。

      4、討論交流,延伸拓展

      在此基礎上,我提出:探究等比數列前n項和公式,還有其它方法嗎?我們知道,

      那么我們能否利用這個關系而求出sn呢?根據等比數列的定義又有,能否聯想到等比定理從而求出sn呢?

      設計意圖:以疑導思,激發學生的探索欲望,營造一個讓學生主動觀察、思考、討論的氛圍、以上兩種方法都可以化歸到,這其實就是關于的`一個遞推式,遞推數列有非常重要的研究價值,是研究性學習和課外拓展的極佳資源,它源于課本,又高于課本,對學生的思維發展有促進作用、

      5、變式訓練,深化認識

      首先,學生獨立思考,自主解題,再請學生上臺來幻燈演示他們的解答,其它同學進行評價,然后師生共同進行總結。

      設計意圖:采用變式教學設計題組,深化學生對公式的認識和理解,通過直接套用公式、變式運用公式、研究公式特點這三個層次的問題解決,促進學生新的數學認知結構的形成。通過以上形式,讓全體學生都參與教學,以此培養學生的參與意識和競爭意識。

      6、例題講解,形成技能

      設計意圖:解題時,以學生分析為主,教師適時給予點撥,該題有意培養學生對含有參數的問題進行分類討論的數學思想。

      7、總結歸納,加深理解

      以問題的形式出現,引導學生回顧公式、推導方法,鼓勵學生積極回答,然后老師再從知識點及數學思想方法兩方面總結。

      設計意圖:以此培養學生的口頭表達能力,歸納概括能力。

      8、故事結束,首尾呼應

      最后我們回到故事中的問題,我們可以計算出國王獎賞的小麥約為1、84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設一條寬10米、厚8米的大道,大約是全世界一年糧食產量的459倍,顯然國王兌現不了他的承諾。

      設計意圖:把引入課題時的懸念給予釋疑,有助于學生克服疲倦、繼續積極思維。

      9、課后作業,分層練習

      必做:P129練習1、2、3、4

      選作:

      (2)"遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?"這首中國古詩的答案是多少?

      設計意圖:出選作題的目的是注意分層教學和因材施教,讓學有余力的學生有思考的空間。

      四、教法分析

      對公式的教學,要使學生掌握與理解公式的來龍去脈,掌握公式的推導方法,理解公式的成立條件,充分體現公式之間的聯系。在教學中,我采用"問題――探究"的教學模式,把整個課堂分為呈現問題、探索規律、總結規律、應用規律四個階段。

      利用多媒體輔助教學,直觀地反映了教學內容,使學生思維活動得以充分展開,從而優化了教學過程,大大提高了課堂教學效率。

      五、評價分析

      本節課通過三種推導方法的研究,使學生從不同的思維角度掌握了等比數列前n項和公式。錯位相減:變加為減,等價轉化;遞推思想:縱橫聯系,揭示本質;等比定理:回歸定義,自然樸實。學生從中深刻地領會到推導過程中所蘊含的數學思想,培養了學生思維的深刻性、敏銳性、廣闊性、批判性。同時通過精講一題,發散一串的變式教學,使學生既鞏固了知識,又形成了技能。在此基礎上,通過民主和諧的課堂氛圍,培養了學生自主學習、合作交流的學習習慣,也培養了學生勇于探索、不斷創新的思維品質。

    關于高中數學說課稿5

      一、說教材

      (1)說教材的內容和地位

      本次說課的內容是人教版高一數學必修一第一單元第一節《集合》(第一課時)。集合這一課里,首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯系,它們是學習、掌握以及使用數學語言的基礎。從知識結構上來說是為了引入函數的定義。因此在高中數學的模塊中,集合就顯得格外的舉足輕重了。

      (2)說教學目標

      根據教材結構和內容以及教材地位和作用,考慮到學生已有的認知結構與心理特征,依據新課標制定如下教學目標:

      1.知識與技能:掌握集合的基本概念及表示方法。了解"屬于"關系的意義,掌握集合元素的特征。

      2.過程與方法:通過情景設置提出問題,揭示課題,培養學生主動探究新知的習慣。并通過"自主、合作與探究"實現"一切以學生為中心"的理念。

      3.情感態度與價值觀:感受數學的人文價值,提高學生的學習數學的興趣,由集合的學習感受數學的簡潔美與和諧統一美。同時通過自主探究領略獲取新知識的喜悅。

      (3)說教學重點和難點

      依據課程標準和學生實際,我確定本課的教學重點為

      教學重點:集合的基本概念及元素特征。

      教學難點:掌握集合元素的三個特征,體會元素與集合的屬于關系。

      二、說教法和學法

      接下來則是說教法、學法

      教法與學法是互相聯系和統一的,不能孤立去研究。什么樣的教法必帶來相應的學法,以遵循啟發性原則為出發點,就本節課而言,我采用"生活實例與數學實例"相結合,"師生互動與課堂布白"相輔助的方法。通過不同層次的練習體驗,憑借有趣、實用的教學手段,突出重點,突破難點。然而,學生是學習的主人,以學生為主體,創造條件讓學生參與探究活動,()不僅提高了學生探究能力,更讓學生獲得學習的技能和激發學生的學習興趣。因此,本次活動采用的學法有自主探究、觀察發現、合作交流、歸納總結等。

      總之,不管采取什么教法和學法,每節課都應不斷研究學生的學習心理機制,不斷優化教師本身的教學行為,自始至終以學生為主體,為學生創造和諧的課堂氛圍。

      三、說教學過程

      接著我來說一下最重要的部分,本節課的教學過程:

      這節課的流程主要分為六個環節:創設情境(引入目標)、自主探究(感知目標)、討論辨析(理解目標)、變式訓練(鞏固目標)、課堂小結(自我評價)、作業布置(反饋矯正)。上述六個環節由淺入深,層層遞進。 多層次、多角度地加深對概念的理解。 提高學生學習的興趣,以達到良好的教學效果。

      第一環節:創設問題情境,引入目標

      課堂開始我將提出兩個問題:

      問題1:班級有20名男生,16名女生,問班級一共多少人?

      問題2:某次運動會上,班級有20人參加田賽,16人參加徑賽,問一共多少人參加比賽?

      這里我會讓學生以小組討論的形式進行討論問題,事實上小組合作的形式是本節課主要形式。

      待學生討論完畢以后我將作歸納總結:問題2已無法用學過的知識加以解釋,這是與集合有關的問題,因此需用集合的語言加以描述(同時我將板書標題:集合)。

      安排這一過程的意圖是為了從實際問題引入,讓學生了解數學來源于實際。從而激發學生參與課堂學習的欲望。

      很自然地進入到第二環節:自主探究

      讓學生閱讀教材,并思考下列問題:

      (1)有那些概念?

      (2)有那些符號?

      (3)集合中元素的特性是什么?

      安排這一過程的意圖是給學生提供活動空間,讓主體主動建構自己的知識結構。培養學生的探究能力。

      讓學生自主探究之后將進入第三環節:討論辨析

      小組合作探究(1)

      讓學生觀察下列實例

      (1)1~20以內的所有質數;

      (2)所有的正方形;

      (3)到直線 的距離等于定長 的所有的點;

      (4)方程 的所有實數根;

      通過以上實例,辨析概念:

      (1)集合含義:一般地,某些指定的對象集在一起就成為一個集合,也簡稱集。而集合中的每個對象叫做這個集合的元素。

      (2)表示方法:集合通常用大括號{ }或大寫的拉丁字母A,B,C…表示,而元素用小寫的拉丁字母a,b,c…表示。

      小組合作探究(2)——集合元素的特征

      問題3:任意一組對象是否都能組成一個集合?集合中的元素有什么特征?

      問題4:某單位所有的"帥哥"能否構成一個集合?由此說明什么?

      集合中的元素必須是確定的

      問題5:在一個給定的集合中能否有相同的元素?由此說明什么?

      集合中的元素是不重復出現的

      問題6:咱班的全體同學組成一個集合,調整座位后這個集合有沒有變化?由此說明什么? 集合中的元素是沒有順序的

      我如此設計的意圖是因為:問題是數學的心臟,感受問題是學習數學的根本動力。

      小組合作探究(3)——元素與集合的關系

      問題7:設集合A表示"1~20以內的所有質數",那么3,4,5,6這四個元素哪些在集合A中?哪些不在集合A中?

      問題8:如果元素a是集合A中的元素,我們如何用數學化的`語言表達?

      a屬于集合A,記作a∈A

      問題9:如果元素a不是集合A中的元素,我們如何用數學化的語言表達?

      a不屬于集合A,記作aA

      小組合作探究(4)——常用數集及其表示方法

      問題10:自然數集,正整數集,整數集,有理數集,實數集等一些常用數集,分別用什么符號表示?

      自然數集(非負整數集):記作 N

      正整數集:

      整數集:記作 Z

      有理數集:記作 Q 實數集:記作 R

      設計意圖:由于不同的人對同一問題有不同的體驗和理解。讓學生通過合作交流相互得到啟發,從而不斷完善自己的知識結構。

      第四環節:理論遷移 變式訓練

      1.下列指定的對象,能構成一個集合的是

      ① 很小的數

      ② 不超過30的非負實數

      ③ 直角坐標平面內橫坐標與縱坐標相等的點

      ④ π的近似值

      ⑤ 所有無理數

      A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④

      第五環節:課堂小結,自我評價

      1.這節課學習的主要內容是什么?

      2.這節課主要解釋了什么數學思想?

      設計意圖:引導學生對所學知識、思想方法進行小結,形成知識系統。教師用激勵性的語言加一點評,讓學生的思想敞亮的發揮出來。

      第六環節:作業布置,反饋矯正

      1.必做題 課本習題1.1—1、2、3.

      2.選做題 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實數a 的值。

      設計意圖:充分考慮到學生的差異性,讓所有學生都有成功的情感體驗。

      四、板書設計

      好的板書就像一份微型教案,為了讓學生直觀易懂的看筆記,板書應設計得有條理性、概括性、指導性,所以我設計的板書如下:

      集 合

      1.集合的概念

      2.集合元素的特征

      (學生板演)

      3.常見集合的表示

      4.范例研究

    關于高中數學說課稿6

      【一】教學背景分析

      1。教材結構分析

      《圓的方程》安排在高中數學第二冊(上)第七章第六節。圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用。圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟后的作用。

      2。學情分析

      圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的。但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現困難。另外學生在探究問題的能力,合作交流的意識等方面有待加強。

      根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:

      3。教學目標

      (1) 知識目標:①掌握圓的標準方程;

      ②會由圓的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程;

      ③利用圓的標準方程解決簡單的實際問題。

      (2) 能力目標:①進一步培養學生用代數方法研究幾何問題的能力;

      ②加深對數形結合思想的理解和加強對待定系數法的運用;

      ③增強學生用數學的意識。

      (3) 情感目標:①培養學生主動探究知識、合作交流的意識;

      ②在體驗數學美的過程中激發學生的學習興趣。

      根據以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:

      4。 教學重點與難點

      (1)重點:圓的標準方程的求法及其應用。

      (2)難點: ①會根據不同的已知條件求圓的標準方程;

      ②選擇恰當的坐標系解決與圓有關的實際問題。

      為使學生能達到本節設定的教學目標,我再從教法和學法上進行分析:

      好學教育:

      【二】教法學法分析

      1。教法分析 為了充分調動學生學習的積極性,本節課采用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發展區上。另外我恰當的利用多媒體課件進行輔助教學,借助信息技術創設實際問題的情境既能激發學生的學習興趣,又直觀的引導了學生建模的過程。

      2。學法分析 通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓。通過應用圓的標準方程,熟悉用待定系數法求的過程。 下面我就對具體的教學過程和設計加以說明:

      【三】教學過程與設計

      整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環節:

      創設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高

      反饋訓練 形成方法 小結反思 拓展引申

      下面我從縱橫兩方面敘述我的教學程序與設計意圖。

      首先:縱向敘述教學過程

      (一)創設情境——啟迪思維

      問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2。7m,高為3m的貨車能不能駛入這個隧道?

      通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決。一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題。用實際問題創設問題情境,讓學生感受到問題來源于實際,應用于實際,激發了學生的學習興趣和學習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。

      通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環節。

      (二)深入探究——獲得新知

      問題二 1。根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

      2。如果圓心在,半徑為時又如何呢?

      好學教育:

      這一環節我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程。然后再讓學生對圓心不在原點的情況進行探究。我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法。

      得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環節。

      (三)應用舉例——鞏固提高

      I。直接應用 內化新知

      問題三 1。寫出下列各圓的標準方程:

      (1)圓心在原點,半徑為3;

      (2)經過點,圓心在點。

      2。寫出圓的圓心坐標和半徑。

      我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的`切線問題作準備。

      II。靈活應用 提升能力

      問題四 1。求以點為圓心,并且和直線相切的圓的方程。

      2。求過點,圓心在直線上且與軸相切的圓的方程。

      3。已知圓的方程為,求過圓上一點的切線方程。

      你能歸納出具有一般性的結論嗎?

      已知圓的方程是,經過圓上一點的切線的方程是什么?

      我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據圓心坐標寫出圓的標準方程。第二個小題有些困難,需要引導學生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓。第三個小題解決方法較多,我預設了四種方法再一次為學生的發散思維創設了空間。最后我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理發現的過程,使探究氣氛達到高潮。

      III。實際應用 回歸自然

      問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。

      好學教育:

      我選用了教材的例3,它是待定系數法求出圓的三個參數的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養了學生建模的習慣和用數學的意識。

      (四)反饋訓練——形成方法

      問題六 1。求過原點和點,且圓心在直線上的圓的標準方程。

      2。求圓過點的切線方程。

      3。求圓過點的切線方程。

      接下來是第四環節——反饋訓練。這一環節中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數學的樂趣,成功的喜悅,找到自信,增強學習數學的愿望與信心。另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養學生思維的嚴謹性具有良好的效果。

      (五)小結反思——拓展引申

      1。課堂小結

      把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數形結合的思想和待定系數的方法 ①圓心為,半徑為r 的圓的標準方程為:

      圓心在原點時,半徑為r 的圓的標準方程為:。

      ②已知圓的方程是,經過圓上一點的切線的方程是:。

      2。分層作業

      (A)鞏固型作業:教材P81—82:(習題7。6)1,2,4。(B)思維拓展型作業:試推導過圓上一點的切線方程。

      3。激發新疑

      問題七 1。把圓的標準方程展開后是什么形式?

      2。方程表示什么圖形?

      在本課的結尾設計這兩個問題,作為對這節課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了。在知識的拓展中再次掀起學生探究的熱情。另外它為下節課研究圓的一般方程作了重要的準備。

      以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計: 橫向闡述教學設計

      (一)突出重點 抓住關鍵 突破難點

      好學教育:

      求圓的標準方程既是本節課的教學重點也是難點,為此我布設了由淺入深的學習環境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數的重要性,自然形成待定系數法的解題思路,在突出重點的同時突破了難點。

      第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據問題情境構建數學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數學模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五。這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破。

      (二)學生主體 教師主導 探究主線

      本節課的設計用問題做鏈,環環相扣,使學生的探究活動貫穿始終。從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的。另外,我重點設計了兩次思維發散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節的學習任務。

      (三)培養思維 提升能力 激勵創新

      為了培養學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力。在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行。

      以上是我對這節課的教學預設,具體的教學過程還要根據學生在課堂中的具體情況適當調整,向生成性課堂進行轉變。最后我以赫爾巴特的一句名言結束我的說課,發揮我們的創造性,力爭“使教育過程成為一種藝術的事業”。

    關于高中數學說課稿7

      一、教材分析:

      1、教材的地位與作用:

      線性規劃是運籌學的一個重要分支,在實際生活中有著廣泛的應用。本節內容是在學習了不等式、直線方程的基礎上,利用不等式和直線方程的有關知識展開的,它是對二元一次不等式的深化和再認識、再理解。通過這一部分的學習,使學生進一步了解數學在解決實際問題中的應用,體驗數形結合和轉化的思想方法,培養學生學習數學的興趣、應用數學的意識和解決實際問題的能力。

      2、教學重點與難點:

      重點:畫可行域;在可行域內,用圖解法準確求得線性規劃問題的最優解。

      難點:在可行域內,用圖解法準確求得線性規劃問題的最優解。

      二、目標分析:

      在新課標讓學生經歷“學數學、做數學、用數學”的理念指導下,本節課的教學目標分設為知識目標、能力目標和情感目標。

      知識目標:

      1、了解線性規劃的意義,了解線性約束條件、線性目標函數、可行解、可行

      域和最優解等概念;

      2、理解線性規劃問題的圖解法;

      3、會利用圖解法求線性目標函數的最優解.

      能力目標:

      1、在應用圖解法解題的過程中培養學生的觀察能力、理解能力。

      2、在變式訓練的過程中,培養學生的分析能力、探索能力。

      3、在對具體事例的感性認識上升到對線性規劃的理性認識過程中,培養學生運用數形結合思想解題的能力和化歸能力。

      情感目標:

      1、讓學生體驗數學來源于生活,服務于生活,體驗數學在建設節約型社會中的作用,品嘗學習數學的.樂趣。

      2、讓學生體驗數學活動充滿著探索與創造,培養學生勤于思考、勇于探索的精神;

      3、讓學生學會用運動觀點觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關系,滲透辯證唯物主義認識論的思想。

      三、過程分析:

      數學教學是數學活動的教學。因此,我將整個教學過程分為以下六個教學環節:1、創設情境,提出問題;2、分析問題,形成概念;3、反思過程,提煉方法;4、變式演練,深入探究;5、運用新知,解決問題;6、歸納總結,鞏固提高。

      1、創設情境,提出問題:

      在課堂教學的開始,我以一組生動的動畫(配圖片)描述出在神奇的數學王國里,有一種算法廣泛應用于工農業、軍事、交通運輸、決策管理與規劃等領域,應用它已節約了億萬財富,還被列為20世紀對科學發展和工程實踐影響最大的十大算法之一。它為何有如此大的魅力?它又是怎樣的一種神奇算法呢?我以景激情,以情激思,點燃學生的求知欲,引領學生進入學習情境。

    關于高中數學說課稿8

      一、說教材:

      1、教材的地位與作用

      導數是微積分的核心概念之一,它為研究函數提供了有效的方法. 在前面幾節課里學生對導數的概念已經有了充分的認識,本節課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導數的幾何意義,更有利于學生理解導數概念的本質內涵. 這節課可以利用幾何畫板進行動畫演示,讓學生通過觀察、思考、發現、思維、運用形成完整概念. 通過本節的學習,可以幫助學生更好的體會導數是研究函數的單調性、變化快慢等性質最有效的工具,是本章的關鍵內容。

      2、教學的重點、難點、關鍵

      教學重點:導數的幾何意義、切線方程的求法以及“數形結合,逼近”的思想方法。

      教學難點:理解導數的幾何意義的本質內涵

      1) 從割線到切線的過程中采用的逼近方法;

      2) 理解導數的概念,將多方面的意義聯系起來,例如,導數反映了函數f(x)在點x附近的變化快慢,導數是曲線上某點切線的斜率,等等.

      二、說教學目標:

      根據新課程標準的要求、學生的認知水平,確定教學目標如下:

      1、知識與技能 :

      通過實驗探求理解導數的幾何意義,理解曲線在一點的切線的概念,會求簡單函數在某點的切線方程。

      過程與方法:

      經歷切線定義的形成過程,培養學生分析、抽象、概括等思維能力;體會導數的思想及內涵,完善對切線的認識和理解

      通過逼近、數形結合思想的具體運用,使學生達到思維方式的遷移,了解科學的`思維方法。

      3、情感態度與價值觀:

      滲透逼近、數形結合、以直代曲等數學思想,激發學生學習興趣,引導學生領悟特殊與一般、有限與無限,量變與質變的辯證關系,感受數學的統一美,意識到數學的應用價值

      三、說教法與學法

      對于直線來說它的導數就是它的斜率,學生會很自然的思考導數在函數圖像上是不是有很特殊的幾何意義。而且剛剛學過了圓錐曲線,學生對曲線的切線的概念也有了一些認識,基于以上學情分析,我確定下列教法:

      教法:從圓的切線的定義引入本課,再引導學生討論一般曲線的切線的定義,通過幾何畫板的動畫演示,得出曲線的切線的“逼近”法的定義.同樣通過幾何畫板的實驗觀察得到導數的幾何意義和直觀感知“逼近”的數學思想.因此,我采用實驗觀察法、探究性研究教學和信息技術輔助教學法相結合,以突出重點和突破難點;

      學法:為了發揮學生的主觀能動性,提高學生的綜合能力,本節課采取了

      自主 、合作、探究的學習方法。

      教具: 幾何畫板、幻燈片

      四、說教學程序

      1.創設情境

      學生活動——問題系列

      問題1 平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?

      問題2 如圖直線l是曲線C的切線嗎?

      (1)與 (2)與 還有直線與雙曲線的位置關系

      問題3 那么對于一般的曲線,切線該如何定義呢?

      【設計意圖】:通過類比構建認知沖突。

      學生活動——復習回顧

      導數的定義

      【設計意圖】:從理論和知識基礎兩方面為本節課作鋪墊。

      2.探索求知

      學生活動——試驗探究

      問一;求導數的步驟是怎樣的?

      第一步:求平均變化率;第二步:當趨近于0時,平均變化率無限趨近于的常數就是。

      【設計意圖】:這是從“數”的角度描述導數,為探究導數的幾何意義做準備。

      問二;你能借助圖像說說平均變化率表示什么嗎?請在函數圖像中畫出來。

      【設計意圖】:通過學生動手實踐得到平均變化率表示割線PQ的斜率。

      問三;在的過程中,你能描述一下割線PQ的變化情況嗎?請在圖像中畫出來。

      【設計意圖】:分別從“數”和“形”的角度描述的過程情況。從數的角度看,,Q();從形的角度看, 的過程中,Q點向P點無限趨近,割線PQ趨近于確定的位置,這個位置的直線叫做曲線在 處的切線。

      探究一:學生通過幾何畫板的演示觀察割線的變化趨勢,教師引導給出一般曲線的切線定義。

      【設計意圖】: 借助多媒體教學手段引導學生發現導數的幾何意義,使問題變得直觀,易于突破難點;學生在過程中,可以體會逼近的思想方法。能夠同時從數與形兩個角度強化學生對導數概念的理解。

      問四;你能從上述過程中概括出函數在處的導數的幾何意義嗎?

      【設計意圖】:引導學生發現并說出:,割線PQ切線PT,所以割線

      PQ的斜率切線PT的斜率。因此,=切線PT的斜率。

      五、教學評價

      1、通過學生參加活動是否積極主動,能否與他人合作探索,對學生的學習過程評價;

      2、通過學生對方法的選擇,對學生的學習能力評價;

      3、通過練習、課后作業,對學生的學習效果評價.

      4、教學中,學生以研究者的身份學習,在問題解決的過程中,通過自身的體驗對知識的認識從模糊到清晰,從直觀感悟到精確掌握;

      5、本節課設計目標力求使學生體會微積分的基本思想,感受近似與精確的統一,運動和靜止的統一,感受量變到質變的轉化。希望利用這節課滲透辨證法的思想精髓.

    關于高中數學說課稿9

      一、教學目標

      (一)知識與技能

      1、進一步熟練掌握求動點軌跡方程的基本方法。

      2、體會數學實驗的直觀性、有效性,提高幾何畫板的操作能力。

      (二)過程與方法

      1、培養學生觀察能力、抽象概括能力及創新能力。

      2、體會感性到理性、形象到抽象的思維過程。

      3、強化類比、聯想的方法,領會方程、數形結合等思想。

      (三)情感態度

      1、感受動點軌跡的動態美、和諧美、對稱美。

      2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發提出問題和解決問題的勇氣。

      二、教學重點與難點

      教學重點:運用類比、聯想的方法探究不同條件下的軌跡。

      教學難點:圖形、文字、符號三種語言之間的過渡。

      三、、教學方法和手段

      教學方法:觀察發現、啟發引導、合作探究相結合的'教學方法。啟發引導學生積極思考并對學生的思維進行調控,幫助學生優化思維過程,在此基礎上,提供給學生交流的機會,幫助學生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數學思維。

      教學手段:利用網絡教室,四人一機,多媒體教學手段。通過上述教學手段,一方面:再現知識產生的過程,通過多媒體動態演示,突破學生在舊知和新知形成過程中的障礙(靜態到動態);另一方面:節省了時間,提高了課堂教學的效率,激發了學生學習的興趣。

      教學模式:重點中學實施素質教育的課堂模式“創設情境、激發情感、主動發現、主動發展”。

      四、教學過程

      1、創設情景,引入課題

      生活中我們四處可見軌跡曲線的影子。

      演示:這是美麗的城市夜景圖。

      演示:許多人認為天體運行的軌跡都是圓錐曲線,研究表明,天體數目越多,軌跡種類也越多。

      演示建筑中也有許多美麗的軌跡曲線。

      設計意圖:讓學生感受數學就在我們身邊,感受軌跡,曲線的動態美、和諧美、對稱美,激發學習興趣。

      2、激發情感,引導探索

      靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優美的曲線飛出去呢?我們把這個問題轉化為數學問題就是新教材高二上冊88頁20題,也就是這里的例題1。

    【高中數學說課稿】相關文章:

    高中數學的說課稿04-19

    高中數學全套說課稿06-08

    高中數學說課稿06-12

    高中數學數列說課稿06-07

    高中數學說課稿06-13

    高中數學《數列》說課稿01-18

    高中數學優秀說課稿03-08

    【優秀】高中數學說課稿03-01

    高中數學數列說課稿(優秀)07-16

    高中數學說課稿(薦)04-03

    <address id="ousso"></address>
    <form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
    1. 日日做夜狠狠爱欧美黑人