分數的基本性質的教案
在教學工作者開展教學活動前,通常需要準備好一份教案,教案有助于學生理解并掌握系統的知識。如何把教案做到重點突出呢?下面是小編精心整理的分數的基本性質的教案,僅供參考,歡迎大家閱讀。

分數的基本性質的教案1
教學目標
1.知識目標 :
理解分數基本性質的含義,學會運用分數的基性質把一個分數化成指定分母(或分子)做分母(或分子),而大小不變的分數。
2.能力目標:培養學生觀察、比較、抽象、概括等初步的邏輯思維能力。
3.情感目標:滲透事物是相互聯系,發展變化的辯證唯物主義
教學重點和難點
重點:理解分數基本性質的含義,掌握分數基本性質的推導過程。數學教學不僅要讓學生掌握知識的結果,更應讓學生掌知識的形成過程。因此確立分數的基本性質的推導過程為本課重點,并使學生在自主推導的基礎上掌握分數的基本性質。
難點:理解分數基本性質“零除外”的道理,歸納分數的基本性質。
新課教學
1、故事引人,揭示課題。
1.1.教師講故事。
猴山上的猴子最喜歡吃猴王做的餅了。有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太小了,我要兩塊。”猴王就把第二塊餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切成十二塊,分給猴3三塊。小朋友,你知道哪只猴子分得多嗎?
討論:哪只猴子分得的多?讓學生發表自己的意見,教師出示三塊大小一樣的餅,通過師生分餅、觀察和驗證,得出結論:三只猴子分得的餅一樣多。
1.2動手操作:
分組:把準備好的紙條分成,討論:你發現了什么?
2、比較歸納,揭示規律
(1)從左往右看,是按照什么規律變化的?
(2)從右往左看,又是按照什么規律變化的?
讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。
填寫書上的括號。
觀察左面的3組式子,分子、分母怎樣變化。用一句話概括;
觀察右面的3組式子,分子、分母怎樣變化。用一句話概括;
講兩句話合成一句話:
分數的分子和分母同時乘以或者除以相同的數(零除外),分數的大小不變。這叫做分數的基本性質。
多層練習,鞏固深化。
1.體驗作用
在方格紙上涂色表示
涂色部分還表示幾分之幾?
2.在下面( )內填上合適的數和符號。
3.請你當法官 (說明理由)
4.把相等的分數卸載同一個圈子里
5.課堂小結。
今天這節課你學到了什么?
課堂作業。
教學反思
“分數的基本性質”在分數教學中占有重要的地位,它是約分,通分的依據,對于以后學習比的基本性質也有很大的幫助,所以,分數的基本性質是本單元的教學重點之一。反思本節課,我認為以下幾點做得較成功:
(1)新課的引入新穎,一上課,先聽一段故事,學生非常樂意,并立即被吸引。思考故事當中提出的問題,學生自然興趣濃厚。通過故事設疑,激起了學生探求新知的欲望。新課的教學扎實,重視了學生獲取知識的思維過程。緊緊圍繞教學重點,通過學生一系列的活動,獲得豐富的感性知識,在此基礎上進行抽象概括,使學生深刻理解分數的基本性質。教師環環緊扣的提問以及引導學生逐步展開的.充分的討論,幫助學生一步步得出結論。
(2) 重視學生能力的培養,知識力求讓學生主動探索,逐步獲取。在教學中,教師為學生提供了自主探索的機會,通過讓學生動手、動口、動腦,充分參與教學活動,培養了學生的抽象概括能力、動手操作能力和口頭表達能力,充分體現學生的主體作用。
(3)課堂練習形式多樣,有層次,有梯度,目的性、針對性較強,達到了鞏固知識、培養技能、激發興趣、發展思維的目的。
本節課出現的問題也很多:
首先,在折紙交流環節學生們參與率并不高,好多學生尤其是后進生普遍是無從下手,在交流時也不主動,很多學生還停留在一知半解的狀態。
其次,在形成性質過程中,對分數基本性質與分數除法的關系,商不變的性質等進行了整合,只有部分學生了解,沒有深入到全班。
還有,“把每一份平均分成幾份”這句話描述不夠清晰,學生理解有困難,可以在課件中完善。
分數的基本性質的教案2
教學目標:
1、學生能理解和掌握分數的基本性質;
2、學生能運用分數的基本性質把一個分數化成分母不同而大小相等的分數。
3、培養學生的動手操作能力和觀察、比較、分析、概括的思維能力
教學重點:理解和掌握分數的基本性質
教學難點:運用分數的基本性質解決實際問題。
教學過程:
一、導入新課
你眼中的豬八戒是什么樣的?請用詞語來表述一下。
今天老師給大家帶來一個關于豬八戒的小故事,你們猜猜豬八戒會做出怎樣的.選擇:唐僧把一張餅分給三個徒弟,三份分得有點不一樣,一份是一塊,一份是兩塊,還有一份是三塊,你們認為豬八戒會挑選哪一份?豬八戒是否真的會得如所愿?(PPT進行展示)
二、探究分數的基本性質
1、出示PPT,學生說出分數,(用PPT展示:首先重合,然后進行對比。)再讓學生用三個圖片進行重合并質疑:分子、分母都不相同,這些數的大小怎么會一樣?
2、引導學生觀察分子分母的變化:
(1)從左往右看,三個分數得分子和分母是按什么規律變化的?(分子、分母同時乘以相同的數,分數的大小不變)
(2)從右往左看,三個分數得分子和分母是按什么樣的規律變化的?(分子、分母同時除以相同的數,分數的大小不變)
3、進行總結:分數的分子和分母都乘以或都除以相同的數,分數的大小不變。
質疑:可以同時乘以或者同時除以0嗎?
總結分數的基本性質:分數的分子和分母都乘以或都除以相同的數(0除外),分數的大小不變。
三、殊途同歸利用商不變驗證分數基本性質
從商不變規律來驗證分數的基本性質。
被除數和除數同時除以一個非0的數,那么商不變。
分子相當于被除數,分母相當于除數,它們也同時除以一個非0的數,大家想一下:分數的大小會發生變化嗎?
剛才我們是從實際的例子中總結出了分數的基本性質,現在我們是用邏輯推理的形式證明了分數的基本性質,殊途同歸。
只不過不同的是,在除法中,叫做商不變規律;在分數中,是分數的基本性質。
四、運用提升
1、奇效的紅方塊,能用幾分之幾表示?
分數的基本性質的教案3
教材分析
分數的基本性質是我們學習分數運算的重要基礎,它包括約分和通分。約分是將分數化簡為最簡形式的過程,通分是將不同分母的分數轉化為相同分母的過程。掌握了分數的基本性質,我們才能順利進行分數的四則運算。除法是分數運算中的重要內容,分數其實就是除法的一種表達方式。在進行除法運算時,我們要特別注意商不變的規律,即被除數乘以一個數得到的商是不變的。理解分數與除法的關系,能夠幫助我們更好地掌握分數的運算規律,為學習更復雜的數學內容打下堅實的基礎。
教材設計了兩個學習活動,讓學生在尋找相等的分數中感受分數的大小相等關系,為后續觀察分數的基本性質提供了豐富的素材。學生將通過這兩組相等的分數,分別觀察并尋找每組分數的分子和分母的變化規律,然后展開交流討論,最終總結出:當分數的分子和分母同時乘以或除以相同的數(零除外)時,分數的大小保持不變。
學情分析
學生已經掌握了分數與除法的關系,以及商不變規律等知識,為本課學習打下了堅實的基礎。五年級學生已經開始養成合作學習的習慣,具備一定的問題分析和解決能力,能夠在老師的`指導下完成“提出問題—探索—解決問題—應用”的學習過程。
在教學中,我通常采用引導學生探索和小組合作學習相結合的方式。通過這種方法,學生可以自己發現分數的基本性質,并學會運用這些性質將一個分數化簡為分母不同但值相等的分數。這種教學方法能夠有效提高教學效果,激發學生的學習興趣,培養他們的獨立思考能力和團隊合作精神。
教學目標
經歷探索分數基本性質的過程,理解分數基本性質。
能運用分數基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。
經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣。
教學重點和難點
理解分數基本性質,能運用分數基本性質轉化分數。
教學過程
一、復習導入
二、探究新知
實踐操作,探究規律
觀察發現:初步概括分數基本性質
括歸納分數基本性質
三、課堂練習
四、課堂小結
出示復習題口答卡片, 復習商不變的規律、分數與除法的關系。
1、講述唐僧分餅的故事:“……貪吃的豬八戒搶著說要吃這個餅的9/12,孫悟空說要吃這個餅的6/8,沙僧說要吃這個餅的3/4。同學們可知道誰吃的餅最多?”
提出問題: 這些分數都相等嗎?
觀察這組相等的分數,你發現了什么?把你的發現說給同伴聽。
分子、分母都乘或除以一個數,這個數可以是0嗎?為什么?
1、課本P43的“試一試”
2、數學游戲:說出相等的分數3、課本P44的“練一練”第1~2、4
通過這節課的學習、你學會了那些知識
口答
小組討論
拿出準備好的圓形紙片,折一折,畫一畫、涂一涂
小組討論、交流
小組討論、交流
做練習,完成后集體交流。
說說,讀分數基本性質
復習舊知,為學習新知識作鋪墊。
將例1改編成故事 提出問題,讓學生對故事中的人物進行直觀 評價 ,為后續探究營造良好氛圍。
讓學生通過動手操作,激發他們對學習的興趣,通過合作探索,初步了解到一些分數的分子和分母不同,但這些分數的大小卻是相等的。
通過觀察不同形式的現象,我們可以逐步總結出其中的規律。這種由表面到深層的探索方式,有助于我們逐步深入了解事物,逐步發現其中的奧秘。
學生們通過觀察和實踐,逐漸探索出了分數的基本性質。為了更深入地理解分數的特點,我們需要全面概括分數的基本性質。
讓學生利用分數的基本性質解決問題,使學生對分數的基本性質理解的更深刻,同時體驗解決問題的樂趣。
對本節課的所學知識的回顧,及所學知識點的總結。
板書設計(需要一直留在黑板上主板書)分數基本性質被除數和除數同時擴大或縮小相同的倍數(零除外),商不變,這就是商不變的規律分數的分子和分母都乘或除以相同的數(零除外),分數的大小不變,這叫做分數基本性質。
教學反思:
分數的基本性質在小學階段是數學學習中的一個重要環節。通過引導學生觀察和探究,可以幫助他們更好地理解分數的概念。在教學中,我注重讓學生參與討論和交流,組織小組活動讓每個學生都有機會表達自己的觀點,互相啟發,共同探討。通過這種方式,學生能夠逐漸理解分數的分子和分母按照一定規律變化,而分數的大小卻保持不變的特點。這樣的教學方法有助于幫助學生建立起數與數之間聯系和變化的認識。
在本節課中,由于我對學困生關注度不夠高,導致他們在應用基本分數性質的過程中遇到困難。小組合作探究中的小組學習也需要不斷改進。
分數的基本性質的教案4
教學內容:人教版五年級數學下冊57頁內容。
教學目標:
知識與能力:使學生理解和掌握分數的基本性質,并能應用這一規律解決簡單的實際問題。
過程與方法:能在觀察、比較、猜想、驗證等學習活動的過程中,有條理、有根據地思考、探究問題,培養學生分析和抽象概括的能力。
情感態度價值觀:體驗數學驗證的思想,培養樂于探究的學習態度。
教學重點:使學生理解和掌握分數的基本性質。
教學難點:運用分數的基本性質解決相關的問題。
教學準備:多媒體課件、正方形紙、直尺、彩筆
教學過程:
一、鋪墊孕伏,溫故遷移
1.比一比:看誰算得又對又快。
2.說一說:商不變的性質是什么?
3.想一想:分數與除法有怎樣的關系?
4.猜一猜:除法中有商不變的規律,分數中是否具有類似的規律?
二、設疑激趣,探究新知
(一)故事激趣,引出分數。
說出自己從故事中聽到的分數。
(二)小組合作,直觀感知。
1.折一折:拿出三張同樣大小的正方形紙,分別用對折的方法平均分成2份、4份、8份。
2.畫一畫:畫出折痕所在的直線。
3.涂一涂:
(1)給平均分成2份的正方形紙的其中的1份涂上顏色。
(2)給平均分成4份的正方形紙的其中的2份涂上顏色。
(3)給平均分成8份的正方形紙的其中的4份涂上顏色。
4.比一比:比較3張正方形紙涂色部分的大小。
5.議一議:和同伴說說自己的'想法。
(二)觀察比較,探究規律。
1.這三個分數的分子、分母都不同,分數的大小卻相等。你能找出它們之間的變化規律嗎?請同學們四人一組,討論這個問題。
2.匯報交流。
3.啟發點撥。
通過從左往右觀察、比較、分析,你發現了什么?
引導學生小結得出:分數的分子、分母同時乘相同的數,分數的大小不變。
那么,從右往左看呢?
讓學生再次歸納:分數的分子、分母同時除以相同的數,分數的大小不變。
4.歸納小結:引導學生概括出分數的基本性質。
5.啟發思考:這里的“相同的數”可以是任何數嗎?(補充板書:0除外),你能舉例說明嗎?
(三)獨立嘗試,運用規律。
1.學生獨立思考,完成例2。
2.反饋交流,訂正點撥。
3.小結:我們可以運用分數的基本性質把一個分數化成分母不同但大小不變的分數。
三、達標檢測,內化提升(見《達標測試題》)
四、總結收獲,評價激勵
這節課你有什么收獲?你對自己的哪些表現比較滿意?
板書設計:
分數的基本性質
例1:
分數的分子、分母同時乘或者除以相同的數(0除外),分數的大小不變。
例2:
分數的基本性質的教案5
教學內容:
書43—44頁
教學目的:
1、通過找規律引導學生發現分數的基本性質。
2、會運用分數的基本性質找出和一個分數有相等關系的分數。
3、能根據解決問題的需要,收集有用的信息,進行歸納、發展學生的歸納、推理能力。
教學重點:
通過找規律引導學生發現分數的基本性質。
教學難點:
會運用分數的基本性質找出和一個分數有相等關系的分數。
教具準備:
投影儀等。
教學過程:
一、鋪墊孕伏
1.口算。(讀題說得數)
3.5×31.8×54.8÷1.28+3.74.5×2
2.5×43÷0.50.8+1.50.8×0.50.14×6
2.根據分數與除法的關系填空。
3.根據120÷30=4在□里填數。
(120×3)÷(30×3)=□
(12÷□)÷(30÷10)=4
(1)學生填空。
(2)你是怎樣想的?(回憶除法中商不變性質)
二、探究新知:
1.新課導入:剛才我們復習了除法中商不變的性質,在分數中有沒有類似的性質呢?
2.實際操作,初步感知。
(1)請同學們每人拿出三張形狀大小相同的紙條。
①把第一張紙條平均分成2份,其中1份涂上顏色并用分數表示出來;
②把第二張紙條平均分成4份,其中2份涂上顏色并用分數表示出來;
③把第三張紙條平均分成6份,其中3份涂上顏色并用分數表示出來。
(2)說說這三個分數的意義。
(3)把三張紙條上下對齊,觀察陰影部分:你發現了什么?說明了什么?
3.啟發引導,總結規律。
(1)從左往右觀察總結。
①觀察手中第一、第二張紙條。
知道平均分的份數由2份變成4份,表示的份數由1份變成2份。
學生分組討論然后填書,一人板演。
④觀察上面兩個式子,分數分子、分母的變化有什么規律?結果怎樣?
引導學生分組討論:分數的分子、分母同時乘以相同的數,分數的`大小不變。
(2)從右往左觀察又知道了什么?
啟發學生知道:
(3)觀察上面兩組式子中,分數的分子、分母的變化,你發現了什么規律?
引導學生分組討論:分數的分子、分母同時除以相同的數,分數的大小不變。
(4)總結歸納:
①引導學生討論有什么規律?
匯報交流:分數的分子和分母同時乘以或者除以相同的數,分數的大小不變。
②這就是分數的基本性質。(板書課題)
③根據分數與除法的關系,以及整數除法中商不變的性質,你能說明分數的基本性質嗎?
④學生讀書中分數的基本性質。
⑤為什么“零除外”?
因為分母不能是0,所以分數的分子、分母不能同時乘以0;又因為除法里,零不能作除數,所以分數的分子、分母也不能同時除以0。
4.反饋練習。(投影出示)
在下列各圖中,畫出陰影,表示圖下面的分數再比較它們的大小:
5.看書
(2)學生閱讀課本并填書,一人板演。
(3)說說你是怎樣想的?根據是什么?
6.反饋練習:
(1)填空。(投影出題,一人在投影片上做,其他同學填書,再集體訂正。)
三、鞏固發展:
1.指出下面每組中的兩個分數是相等的還是不相等的,為什么?
2.口答(由學生提問,并指名回答)
3.同桌根據分數的基本性質互相編題、提問。
四、課堂小結:
這節課學習了什么?
板書設計:
課題:分數基本性質
分數的基本性質的教案6
教學目標
1.使學生對數的整除的有關概念掌握得更加系統、牢固.
2.進一步弄清各概念之間的聯系與區別.
3.使學生對最大公約數和最小公倍數的求法掌握得更加熟練.
4.掌握分數、小數的基本性質.
教學重點
通過對主要概念進行整理和復習,深化理解,形成知識網絡.
教學難點
弄清概念間的聯系和區別,理解易混淆的概念.
教學步驟
一、鋪墊孕伏.
教師談話:同學們,昨天老師讓大家在課下復習了第十冊課本中約數和倍數一章的內容,
在這一章中我們學過了哪些概念呢?請同學們分組討論,討論時由一名同學做記錄.(學生匯報討論結果)
揭示課題:在數的整除這部分知識中,有這么多的概念,那么這些概念之間又有怎樣的聯系呢?這節課,我們就把這些概念進行整理和復習.
二、探究新知.
(一)建立知識網絡.【演示課件“數的整除”】
1.思考:哪個概念是最基本的概念?并說一說概念的內容.
反饋練習:
在12÷3=4 4÷8=0.5 2÷0.l=20 3.2÷0.8=4中,被除數能除盡除數的有( )個;被除數能整除除數的有( )個.
教師提問:這四個算式中的被除數都能除盡除數,為什么只有這一個算式中的'除數能整除被除數呢?整除與除盡到底有怎樣的關系呢?
教師說明:能除盡的不一定都能整除,但能整除的一定能除盡.
2.說出與整除關系最密切的概念,并說一說概念的內容.
反饋練習:下面的說法對不對,為什么?
因為15÷5=3,所以15是倍數,5是約數. ( )
因為4.6÷2=2.3,所以4.6是2的倍數,2是4.6的約數. ( )
明確:約數和倍數是互相依存的,約數和倍數必須以整除為前提.
3.教師提問:
由一個數的倍數,一個數的約數你又想到什么概念?并說一說這些概念的內容.
根據一個數所含約數的個數的不同,還可以得到什么概念?
互質數這個概念與哪個概念有關系?它們之間有怎樣的關系呢?
互質數這個概念與公約數有關系,公約數只有1的兩個數叫做互質數.
4.討論互質數與質數之間有什么區別?
互質數講的是兩個數的關系,這兩個數的公約數只有1,質數是對一個自然數而言的,它只有1和它本身兩個約數.
5.教師提問:
如果我們把24寫成幾個質數相乘的形式,那么這幾個質數叫做24的什么數?
只有什么數才能做質因數?
什么叫做分解質因數?
只有什么數才能分解質因數?
6.教師提問:
誰還記得,能被2、5、3整除的數各有什么特征?
由一個數能不能被2整除,又可以得到什么概念?
(二)比較方法.
1.練習:求16和24的最大公約數和最小公倍數.
2.思考:求最大公約數和最小公倍數有什么聯系和區別?
(三)分數、小數的基本性質.
1.教師提問:
分數的基本性質是什么?
小數的基本性質是什么?
2.練習.
(1)想一想,小數點移動位置,小數大小會發生什么變化?
(2)
(3)下面這組數有什么特點?它們之間有什么規律?
0.108 1.08 10.8 108 1080
三、全課小結.
這節課我們把數的整除的有關知識進行了整理和復習,進一步弄清了各概念之間的
聯系和區別,并且強化了對知識的運用.
四、隨堂練習
1.判斷下面的說法是不是正確,并說明理由.
(1)一個數的約數都比這個數的倍數小.
(2)1是所有自然數的公約數.
(3)所有的自然數不是質數就是合數.
(4)所有的自然數不是偶數就是奇數.
(5)含有約數2的數一定是偶數.
(6)所有的奇數都是質數,所有的偶數都是合數.
(7)有公約數1的兩個數叫做互質數.
2.下面的數哪些含有約數2?哪些是3的倍數?哪些能同時被2、3整除?哪些能同時被2、5整除?哪些能同時被3、5整除?哪些能同時被2、3、5整除?
18 30 45 70 75 84 124 140 420
3.填空.
在1到20中,奇數有( );偶數有( );質數有( );合數有( );
既是質數又是偶數的數是( ).
4.按要求寫出兩個互質的數.
(1)兩個數都是質數.
(2)兩個數都是合數.
(3)一個數是質數,一個數是合數.
5.說出下面每組數的最大公約數和最小公倍數.
42和14 36和9
13和5 6和11
6.0.75=12÷( )=( ) :12=
五、布置作業
1.把下面各數分解質因數.
24 45 65 84 102 475
2.求下面每組數的最大公約數和最小公倍數.
36和48 16、32和24 15、30和90
六、板書設計
數的整除分數、小數的基本性質
數學教案-數的整除 分數、小數的基本性質
分數的基本性質的教案7
教學目標
1、學生通過實際操作和觀察,預測和猜想分數的基本性質,然后進行實驗分析,通過數據和圖表來驗證自己的猜想。接著,學生根據實驗結果進行合情推理,總結分數的特點和規律。最后,學生通過探究創造的過程,深入理解分數與整數除法中商不變性質之間的聯系,從而掌握分數的基本性質。
2、根據分數的基本性質,學會把一個分數化成用指定的分母做分母或指定的分子做分子而大小不變的分數,為學習約分和通分打下基礎。
3、培養學生觀察、分析和抽象概括的能力是教育的重要任務之一,通過培養這些能力,學生可以更好地理解事物之間的聯系和發展變化。在數學學習中,學生不僅要學會運用各種方法進行驗證,還要學會敢于質疑、學會分析,這樣才能更深入地理解數學知識。在教育教學中,應該注重培養學生的思維能力和創新意識,讓他們在學習過程中不斷探索、實踐,從而提高他們的綜合素質。
教學重點 使學生理解分數的基本性質。
教學難點 讓學生自主探索,發現和歸納分數的基本性質,以及應用它解決相關的問題。
教學過程
一、故事情景引入
同學們,去年中秋節,我家鄰居李奶奶家里發生了一件有趣的事情。當晚,李奶奶熱情地邀請我們去她家吃月餅。我們一到她家,就看到桌上擺滿了各種口味的月餅:蓮蓉、豆沙、五仁,還有她自己做的花生醬月餅。大家圍坐在桌前,品嘗著月餅,暢談著中秋節的傳統和故事。突然,李奶奶掏出一盒特別的月餅,說是她從外地帶回來的,據說是一種新口味。我們打開一看,原來是冰淇淋月餅!大家都很驚訝,立刻嘗了一塊。冰涼的冰淇淋搭配香甜的月餅皮,味道清新爽口,大家都覺得十分美味。這個不同尋常的月餅,讓我們的中秋節增添了一絲新奇和歡樂。
好,既然大家都這么好奇,就張開小耳朵認真聽。去年的中秋節呀,李奶奶家的孫兒小紅、小明、小兵都來了,家里可熱鬧了。李奶奶笑得合不攏嘴,她拿出一個又大又圓的月餅,對孫兒們說:“孩子們,奶奶給你們分月餅了。老大小紅,奶奶分這塊月餅的1/3給你,老二小明,奶奶分這塊月餅的2/6給你,老三小兵,奶奶分這塊月餅的3/9給你,(邊講邊貼出名字和三個分數)你們同意嗎?”奶奶的話剛講完,小紅就嘟著嘴叫了起來:“奶奶你不公平!分給小兵的多,分給我的少!”小明連忙叫著:“奶奶不公平,奶奶偏心!”只有小兵在偷著樂。
同學們,你們覺得奶奶公平嗎?現在同桌之間討論一下。
討論完了請舉手。
生甲:“我覺得不公平,小紅分得多。”
生乙:“我覺得小明分得多。”
生丙:“我覺得公平,他們三個分得一樣多。”
師:看起來我們班的同學也開始討論起來了,關于李奶奶分發月餅是否公平,等我們上完這節課,他們就會有答案了。
二、新授
師:老師拿出一個學具袋,問同學們里面有什么東西。同學們紛紛拿出學具袋,看到里面有些什么呢?(圓片)有幾個呢?(三個)
請你們把這三張圓片疊起來,比一比大小,看看怎么樣?
生:“三張圓片一樣大。”
1.師:“下面我們就用三張一樣大的圓片代替月餅,象李奶奶一樣來分月餅了。”
首先,請在第一張圓片上表示出它的1/3;
再在第二張圓片上表示出它的2/6;
然后在第三張圓片上表示出它的3/9。
好了,大家動手分一分。(教師巡視指導)
2、師:“分完了的請舉手?
老師跟你們一樣,也準備了三張同樣大小的圓片。(邊說邊操作,同樣大)
下面請哪位同學說一說,你是怎么分的?”
生:“把第一個圓片平均分成三份,取其中的一份,就是它的三分之一。”
生:“把第二個圓片平均分成六份,取其中的兩份,就是它的六分之二。”
師:“那九分之三又是怎么得到的呢?大家一起說。”
生:“把這塊圓片平均分成九份,取其中的三份,就是它的九分之三。”
(學生說的同時,教師操作,分完后把圓片貼在黑板上。)
3、師:“同學們,觀察這些圓的陰影部分,你有什么發現?”
小結:原來三個圓的陰影部分是同樣大的。
師:“現在再來評判一下,奶奶分月餅公平嗎?為什么?”(請幾名學生回答)
生:“奶奶分月餅是公平的,因為他們三個分得的月餅一樣多。”
師:“現在我們的意見都統一了,奶奶是非常公平的,他們三個人分的月餅一樣多。那你覺得1/3、2/6、3/9這三個分數的大小怎么樣呢?”
生甲:“通過圖上看起來,這三個分數應該是一樣大的。”
生乙:“這三個分數是相等的。”
師:“剛才的試驗證明,它們的大小是相等的。”(板書,打上等號)
4、研究分數的基本規律。
師:“我們仔細觀察這一組分數,它的什么變了,什么沒變?”
生甲:“三個分數的分子分母都變了,大小沒變。”
師:“那它的分子分母發生了怎樣的變化呢?讓我們從左往右看。
第一個分數從左往右看,跟第二個分數比,發生了什么變化?”
生乙:“它的分子分母都同時擴大了兩倍。”
師:“跟第三個分數比,它又發生了什么變化?”(生回答)對了,它的分子分母都同時擴大了三倍。
再引導學生反過來看,讓學生自己說出其中的規律。(邊講邊板書)
教師小結:大家剛才都認真觀察了這組分數,發現它們的分子和分母不同,但大小卻相同。那么,當分子和分母發生怎樣的變化時,分數的大小保持不變呢?請和你的同桌討論一下,總結一下。
學生 發言
小結:像分數的分子分母發生的.這種有規律的變化,就是我們這節課學習的新知識。分數的基本性質。
5、深入理解分數的基本性質。
師:“什么叫做分數的基本性質呢?就你的理解,用自己的語言說一說。”(學生討論后發言)
師:分數的基本性質是數學中非常重要的概念之一。在學習分數時,我們需要掌握一些基本性質,比如分數的大小比較、分數的加減乘除運算規則等。通過掌握這些基本性質,我們能夠更好地理解和運用分數,解決各種數學問題。學生們剛才都簡要介紹了分數的基本性質,而在教科書上,通常會更系統地總結和解釋這些性質。教科書是經過專業編寫和審核的,其中的內容經過精心設計和組織,能夠幫助學生更好地理解知識點,掌握基本規則。因此,教科書上對于分數的基本性質的總結是經過權威的認可和驗證的,更具備權威性和準確性。所以,學生們在學習分數時,可以參考教科書上的內容,更好地理解和掌握分數的基本性質。
齊讀分數的基本性質,并用波浪線表出關鍵的詞。
生甲:我覺得“零除外”這個詞很重要。
生乙:我覺得“同時”“相同”這兩個詞很重要。
師:想一想為什么要加上“零除外”?不加行不行?
讓學生結合以前學過的商不變的性質討論,為什么加“零除外”。
教師小結:“以三分之一這個分數為例,它的分子分母同時除以零,行嗎?不行,除數為零沒意義。所以零要除外。同時乘以零呢?我們就會發現,分子分母都為零了,而分數與除法的關系里,分母又相當于除數,這樣的話,除數又為零了,無意義。所以一定要加上零除外。”(邊講邊板書。)
三、應用
學習分數的基本性質對我們有什么幫助呢?通過掌握分數的基本性質,我們可以利用一些技巧,將一個分數變換成多個分子和分母不同但值相等的新分數,就像變魔術一樣。接下來,讓我們一起來學習如何進行這個神奇的變換吧。
2.學生練習課本例題2,兩名學生在黑板上做。
3.學生自己小結方法。
4.按規律寫出一組相等的分數。
分數的基本性質的教案8
一、教學內容:
五年級下冊教科書p75。
二、教學目標:
1、通過動手操作與觀察比較,使學生經歷探究分數基本性質的過程,理解分數的基本性質。
2、能運用分數的基本性質把一個分數化成指定分母(或分子)而大小不變的分數。
3、培養學生觀察、比較、抽象、概括等能力以及有條有理、有根有據的邏輯思維能力。
4、滲透類比的數學思想和方法,在探究中體驗學習的樂趣。
三、教學重點:
1、在探究的基礎上理解分數的基本性質。
2、能正確運用分數的基本性質。
四、教學難點:
1、抽象和概括分數的基本性質。
2、運用整數除法中商不變的'性質解釋分數的基本性質。
五、教法要素:
1、已有的知識和經驗:
⑴分數的意義。
⑵除法中商不變的性質。
⑶分數與除法的關系。
2、原型:正方形紙片、有關的圖示以及通過平均分引出的分數。
3、探究的問題:
⑴、三個分數之間的關系。
⑵根據分數與除法的關系,以及整數除法中商不變規律,說明分數的基本性質。
六、教學過程:
(一)喚起與生成
引導學生不用計算,判斷“1÷5”、“2÷10”、“10÷50”的商之間有什么聯系,并說明依據是什么。
引入:這是除法中的數學規律,今天我們研究分數中的數學規律。
(二)探究與解決
遵循“具體——歸納——演繹”的程序,探究分數的基本性質。
1、具體。
⑴“折”和“分”:
照例1提示,學生操作:把正方形紙片進行對折,涂上相應部分的顏色,并用分數表示涂色部分。
⑵觀察和發現:
引導學生對照三個圖形觀察三個分數,充分思考:你發現了什么?
124根據學生回答,板書=248
⑶分析與說明:
啟示學生分析:這三個分數之間有什么聯系?
學生先獨立思考,再小組討論,然后全班交流。交流時,要學生說明是按照什么順序比的?什么變了?什么沒變?小組間相互補充、質疑、完善。
⑷補充事例:
啟發學生舉出相應的例子,再加以說明,豐富認識。
2、歸納:
⑴根據上面的例子和分析,可以發現什么規律?
同桌說一說,全班交流,互相補充與完善。
教師根據學生的回答板書分數的基本的性質,追問:“相同的數”有限制嗎?
⑵類比遷移。
啟發學生思考:分數的基本性質與學過的什么知識有聯系?具體說一說。
3、演繹:
⑴根據分數的基本性質填空:
1( )( )1015==363154( )
⑵出示例2,先由學生獨立審題并解答,再小組討論,然后全班交流;交流時要重點說明是怎樣想的。結合學生回答,板書分數分子、分母變化的過程。
(三)訓練與應用
1、完成“做一做”第1題、第2題。學生獨立完成,集體訂正。
2、判斷正誤,并說明理由。
⑴分子、分母加上或減去同一個數,分數的大小不變。
aa×c⑵=bb×c
3、完成練習十四第1、2、4題。
(四)小結與提高
小結學到的知識、方法以及學習的過程等,評價學習的表現。
課外延伸:
今天學的是分數的基本性質,分數還有其他性質嗎?有興趣的同學課后可以了解一下。
分數的基本性質的教案9
【教學目標】
1.理解和掌握分數的基本性質,知道它與整數除法中商不變性質之間的聯系。
2.根據分數的基本性質,學會把一個分數化成用指定的分母做分母或指定的分子做分子而大小不變的分數。
3.培養學生觀察、分析和抽象概括的能力。
【教學重點】理解分數的基本性質。
【教學難點】發現和歸納分數的基本性質,并能應用它解決相關的問題。
【教學過程】
一、復習引入
1.看算式快速得出結果。
15 ÷ 3=
150 ÷ 30=
1500÷ 300=
師:這三個算式有什么特點?誰能說說這就是我們四年級學過的什么性質?(商不變性質)
2.復習商不變性質。
師:什么是商不變性質呢?(在除法里,被除數和除數同時擴大或者縮小相同的倍數,商不變。或者說,被除數和除數同時乘以或者除以相同的數,零除外,商不變。)
二、新授課
1.通過探索,發現規律
師:老師這里有3張同樣大小的正方形紙,這里,我們將它們平均分,分別涂上不同顏色,你能用分數把它們表示出來嗎?自己拿出學具(三張小正方形紙和彩筆)試一試。
學生自己完成任務。
師:看看這三個圖,你發現了什么?(涂色的面積一樣大)通過圖上看起來,這三個分數是什么關系?(相等的)
師:我們仔細觀察這一組分數,它的什么變了,什么沒變?(引導學生觀察分數的分子分母變化關系,讓學生自己說出其中的變化。)
師:剛才大家都觀察得很仔細,這組分數的分子分母都不同,它們的大小卻一樣,那么,分子分母發生怎樣變化的時候,它的`大小不變呢?同桌之間互相說一說,總結一下,好嗎?
師總結:像分數的分子分母發生的這種有規律的變化,就是我們這節課學習的新知識--分數的基本性質。
2.深入理解分數的基本性質。
師:什么叫做分數的基本性質呢?就你的理解,用自己的語言說一說。(學生討論后發言)
師:剛才同學們都用自己的語言說了分數的基本性質,我們的書上也總結了分數的基本性質:
師:想一想為什么要加上"零除外"?不加行不行?我們前面學過什么定律也有這個"零除外"?(讓學生結合以前學過的商不變的性質討論,為什么加"零除外"。)
教師小結:以三分之一這個分數為例,它的分子分母同時除以零,行嗎?不行,除數為零沒意義。所以零要除外。同時乘以零呢?我們就會發現,分子分母都為零了,而分數與除法的關系里,分母又相當于除數,這樣的話,除數又為零了,無意義。所以一定要加上零除外。
三、應用
1.學了分數的基本性質到底又什么用呢?老師告訴你們,根據分數的基本性質,我們就能把一個分數變成多個跟它大小一樣,分子分母卻不同的新分數。下面就讓我們來練習一下。
2.學生練習課本例題2,兩名學生在黑板上做。
3.學生自己小結方法。
4.按規律寫出一組相等的分數。
四、總結
這節課大家有什么收獲?
分數的基本性質的教案10
這個教學設計的一個顯著特點是注重學生的學習方法。從引導學生進行大膽猜想、實踐感知、觀察討論到共同總結歸納,完全是為了培養學生的自主探究能力和合作交流能力。
在教學分數的基本性質時,我充分激發學生的學習熱情,為他們提供充足的數學學習機會,幫助他們通過自主觀察、討論、合作和探究學習,真正理解和掌握基本的數學知識和技能,充分發揮學生的主動性和創造性。因此,在數學課堂教學中,必須將教師的教導轉化為學生的學習,深入研究學習方法,建立探究式學習模式。
1、讓學生在自主探索中科學驗證
教師在課堂中引導學生通過商不變性質進行探究,激發他們大膽猜想,并在適當的時機揭示猜想內容,對學生的猜想提出質疑,引導他們自主探究。通過創設自主探索、合作互助的學習方式,學生可以選擇探究的學習材料和參與研究的學習伙伴,充分尊重他們的思維特點。在自主探索中,鼓勵學生用自己的方式來驗證猜想,從而增強他們的學習體驗和自信心。整個教學過程以“猜想——驗證——完善”為主線,強調學生自主參與,通過規律讓學生自主發現、方法讓學生自主尋找、思路讓學生自主探索,問題讓學生自主解決。教學目標的設定考慮到學生已掌握除法和分數的關系,及商不變性質的知識基礎,使學生能夠進行具體操作。教學過程體現學生學為主,教師為輔的教學理念。
2、讓學生在分層練習中鞏固深化
練習設計的.初衷是為了幫助學生鞏固和提升他們對數學知識的理解和掌握。通過設置不同層次和類型的題目,讓學生逐步深入學習,從而達到系統掌握知識的目的。第1、2題是基礎練習,幫助學生理解概念,掌握基本知識;第3題則是在基礎上進行鞏固練習,加深對知識的理解;第5題是綜合練習,結合整除和分數的基本性質,考察學生對知識的綜合運用能力。整個練習的設計注重漸進式學習,旨在提高學生的學習效果。
3、讓多媒體技術和學科教學的整合
在教學中,我善于運用多媒體技術,設計生動有趣的課件,注重直觀呈現和動態展示,讓學生能夠深入體驗知識的構建過程,而不僅僅是死記硬背知識點。通過現代教育技術的應用,我能夠激發多種感官參與,提升學生的學習效果。在課堂教學中,我注重引導學生動手實踐,例如進行折紙活動等,讓學生在輕松愉快的氛圍中掌握知識。同時,我倡導互動式教學,通過按按按的反饋功能,及時了解每位學生對新知識的掌握情況,從而有針對性地進行教學調整,幫助學生更好地成長。
總之,本課程的設計注重激發學生的學習興趣,引導他們積極參與,培養他們的創新精神和實踐能力,促使他們在情感態度方面得到全面發展。我們致力于讓學生成為學習的主體,充分發揮他們的主動性,促進其全面發展。希望學生在這門課程中能夠獲得全方位的成長和提升。
分數的基本性質的教案11
教學目標:
1.經歷探索分數的基本性質的過程,理解分數的基本性質。
2.能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變得分數。
3.經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣。
教學重點:
探索和理解分數的基本性質
教學難點:
理解分數的基本性質,并能應用其解決一些簡單問題。
教具準備:
圓、長方形紙片
教學過程:
一、找分數
出示40的圓形圖,畫出陰影,提問:你可以用分數表示出陰影部分得面積嗎?
6/9和2/3表示有什么樣的關系?
折一折
說一說這些分數有什么共同之處。
歸納:分數的分子和分母都乘或除以相同的`數(0除外)分數的大小不變。
二、嘗試練習
學生獨立嘗試填寫,教師巡視指導,然后讓學生交流自己的思考過程。
三、鞏固
指導學生進行練習,并讓學生說說是運用了分數的什么性質?
練一練
涂一涂,填一填。完成第1、2題。
學生填寫完要說說想法,重點說說分母由3變成了18要乘6,所以分子2也要乘6。
完成練一練第3、4題。
板書設計:
找規律
分數的分子和分母都乘以
或除以相同的數(0除外),
分數的大小不變
分數的基本性質的教案12
教學內容人教課標實驗教材五年級下冊P75分數的基本性質
教學目標
1.讓學生通過經歷預測猜想——實驗分析——合情推理——探究創造的過程,理解和掌握分數的基本性質。
2.根據分數的基本性質,學會把一個分數化成用指定的分母做分母或指定的分子做分子而大小不變的分數,為學習約分和通分打下基礎。
3.培養學生觀察、分析和抽象概括的能力,滲透事物是互相聯系、發展變化的辯證唯物主義觀點。體驗到數學驗證的思想,培養敢于質疑、學會分析的能力。
教學重點使學生理解分數的基本性質。
教學難點讓學生自主探索,發現和歸納分數的基本性質,以及應用它解決相關的問題。
教學關鍵:經歷預測猜想——實驗分析——合情推理——探究創造的過程
教學過程:
一、故事導入,確定目標。
1.唐僧師徒四人在西天取經的路上得到了一個大西瓜,他們知道豬八戒想多吃。師傅說:“分給他二分之一,他嫌少,分給他四分之二,他還嫌少,之后師傅說分給他八分之四,這次豬八戒覺得已經很多了,高興得答應了。可是悟空卻在旁邊一個勁地笑,你知道孫悟空為什么笑嗎?二分之一、四分之二、八分之四這三個分數到底有什么關系呢?
2.通過這節課的學習同學們就知道其中的奧秘了!板書課題,共議目標。
二、目標的教學
1、把三張正方形紙平均對折一次、二次、三次,將紙平均分成2、4、8份,分別把2分之一、4分之二、8分之四涂上顏色,并標出二分之一、四分之二、8分之四。
2、仔細觀察三張紙的涂色部份,你們能發現什么?我們都發現了涂色部份的面積是相等的,那你們能不能把二分之一、四分之二、八分之四列成一個等式呢?現在你們知道孫悟空為什么笑了嗎?請同學回答。豬八戒每次分到的都是一樣多的。它還以為啊,開始分得少,后來分得多。不過豬八戒也許也正納悶呢?這幾個分數的分子和分母各不一樣,那它們的大小怎么會一樣呢?你們想幫豬八戒解決這個問題嗎?(想)下面請同學們把這個式子從左往右地觀察,看一下每個分數的'分子分母怎樣變化?才得到下一個分數。
把二分之一的分子分母同時乘2得到了四分之二、四分之二的分子和分母同時乘2又得到了八分之四。那在這個式子中我們是把分子分母同時乘2,分數的大小不變,那如果我們把分數的分子分母同時乘5分數的大小變嗎?同時乘以10呢?那你們能不能根據這個式子來總結一個規律呢?
師板書:分數的分子分母同時乘相同的數,分數的大小不變。
這樣的例子我們可以舉出很多很多,剛才我們是從左往右觀察的,如果把這個式子從右往右觀察,你們又會發現什么呢?
我們發現了8分之四的分子與分母同時除以2得了四分之二,四分之二的分子與分母同時除以2得到了二分之一。嗯,分數的分子分母同時除以2分數的大小不變,如果同時除以4大小會變嗎?同時除以5呢?能不能根據這個式子再總結出一句話呢?
師板書:或者除以
板書八分之四同時除以0,問:這個式子成立嗎?(打上問號)不成立,為什么?因為0不能作除數,0不能作除數,所以這個式子是錯誤的。(畫*)我不除以0了,我乘以0,這個式子成立嗎?(板書:8分之四乘以0,打上問號)不成立,因為在分數當中分母相當于除數,除數不能為0。對,大家都知道0不能作除數,所以這兩個式子都是不成立的?(畫*)我們剛才總結的分數的分子分母同時乘或者除以相同的數,不是所有的數需要加上一句什么話?0除外。師板書:0除外。到現在為止這個規律我們就總結完了,那在這個規律里你覺得什么地方需要我們注意一下呢?
”同時“和”相同的數“(師將重點詞語打點),大家想得一樣嗎?這個就是我們今天這節課要學習的分數的基本性質。我相信如果當時豬八戒會這個分數的基本性質,那就不會出現這樣的笑話了,那咱們同學們千萬不要范它那樣的錯誤了。下面讓我們一起把分數的基本性質邊讀邊記。
3、教學例2
出示例2:把3/4和15/24化成分母是8而大小不變的分數。
思考:要把3/4和15/24
分數的基本性質的教案13
本單元教學分數的基本性質,約分、通分,比較分數的大小等知識,讓學生進一步理解分數的意義,并為分數四則計算作必要的準備。分數的基本性質是約分和通分的依據,比較幾個異分母分數的大小往往先通分。根據知識間的聯系,全單元內容分三部分編排。
第60~64頁分數的基本性質,約分。
第65~68頁通分,比較分數的大小。
第69~73頁全單元內容的整理與練習,實踐與綜合應用。
1、 精心安排探索分數基本性質的教學活動。
例1和例2教學分數的基本性質,按“呈現現象——發現規律——聯系相關知識”的線索組織教學活動。
例1的圖形是四個大小相等的圓,各個圓平均分的份數不同。用分數表示每個圓里的涂色部分,分別寫出13、12、26、39四個分子、分母都不相同的分數。比較各個圓里的涂色部分,能夠看到從左往右第1、3、4個圓的涂色部分大小相等,由此得到寫出的分數大小相等,即13=26=39。這道例題讓學生初步感受分子、分母都不相同的分數中,有些分數的大小相等,有些分數的大小不等。并對分子、分母不等,但分數大小相等的現象產生興趣。
例2承接例1,在對折正方形紙的活動中又得出一些與12大小相等的分數,分別寫成等式12=24、12=48、12=816,再次讓學生感受分子、分母不同的分數,大小可以相等。寫出的三個等式,是研究分數基本性質的素材。
教材分三步引導學生發現分數的基本性質。第一步研究例2每個等式中的兩個分數,它們的分子、分母是怎樣變化的,感受變化是有規律的。在記錄變化的方式時,教材寫出了乘號或除號,啟示學生從分子、分母乘或除以一個數的角度去觀察。讓學生在括號里填數,體驗分子、分母乘或除以的是相同的數,有助于發現規律。對每個等式的研究,既從左往右觀察,也從右往左觀察,充分利用了素材,從中獲得盡量多的感性知識。填寫連等式12=()()=()()=()(),把12、24、48、816有序地排列起來,能從中得到許多感受。如,12的分子、分母都乘2得到24,24的分子、分母都乘2得到48,48的分子、分母乘2得到816,照這樣還能寫出1632、3264……這些分數的大小都相等。又如,與12大小相等的分數有無數多個,每個分數的分子、分母除以相同的數都能得到12。
第二步利用例2的經驗觀察例1等式中的三個分數的分子、分母是怎樣變化的,體會這些分數相等的原因和例2一樣。而且分子、分母乘或除以的數,除了2、4、8,還可以是3和其他的數。這樣,對分數基本性質的感受就更豐富了。
第三步概括兩道例題中分子、分母變化但分數大小不變的規律。在充分交流之后,閱讀教材里的敘述,理解“同時”乘或除以“相同”的數這些規范的語言,知道這個規律叫做分數的基本性質。聯系除數不能是0,明白分數的分子、分母同時乘或除以的數不能是0,使得到的規律更嚴密。
在得出分數的基本性質后,教材還安排了兩項活動: 一是根據分數的基本性質寫出一組分數,要先任意寫一個分數,再把它的分子、分母同時乘或除以相同的數,得到大小不變的分數。寫出的一組分數,可以是兩個分數,也可以是幾個分數。這項活動起鞏固分數基本性質的作用,還滲透了通分、約分所需要的思想。二是用整數除法中商不變的規律說明分數的基本性質,由于除法里的被除數和除數分別相當于分數的分子和分母,所以除法中商不變的規律和分數的基本性質是一致的。溝通這兩個知識,有助于學生建立新的認知結構,進一步理解分數的基本性質。
練習十一第1~3題配合分數基本性質的教學。第1題繼續體驗分數基本性質的內容,在方格紙上涂色表示1224,再說出涂色部分還表示612、48、36、24、12等分數,還要從不同角度說明這些分數的大小相等。如,因為這些分數是用同一個涂色部分表示的,所以大小相等;又如,這些分數可以把1224的分子、分母同時除以2、3、4、6或12得出,所以大小相等。第2題應用分數的基本性質判斷同組的兩個分數是不是相等,其中兩組分數的分子、分母沒有除以相同的數,是學生初學分數的基本性質時容易出現的錯誤。這些反例能加強對分數基本性質的.理解。第3題運用分數的基本性質對分數進行等值變化,是通分、約分需要的基本功。
2、讓學生把分數等值改寫,理解約分和通分。
例3教學約分,分三步安排。首先看圖寫出和1218相等,而分子、分母都比較小的分數,為理解約分的含義搭建認知平臺。教學分數基本性質的時候,曾經用幾個分子、分母不同,但大小相等的分數表示同一個圖形里的涂色部分。現在聯系這個經驗教學約分,寫出的分數分子、分母都應該比1218的分子、分母小,體會大小相等的分數中,分子、分母小的分數比較簡單。這種體會在說說寫分數時的思考能夠獲得,如長方形里的涂色部分,可以看作長方形的1218,也可以看作長方形的69、46或23。顯然,這個涂色部分用23表示最簡便。然后教學什么是約分和怎樣約分,是例題的主要內容。關于約分的含義,聯系1218與69、46、23的關系,突出了兩點: 與原來的分數大小相等,分子、分母都比原來的分數小。關于約分的方法,示范了分步約分,也示范了一次約分,讓學生從自己的實際出發,選擇適宜自己的約分方法。教學約分的意義和方法,都是學生有意義地接受新知識。要充分體驗約分是應用分數的基本性質化簡分數,不改變分數的大小。還要注意約分的書寫格式,分子和分母分別除以它們的公因數,得到的商(即新的分子和分母)應該寫在適當的位置上。最后以23為例教學最簡分數,指出約分通常要約成最簡分數。
練習十一第4~7題配合例3的教學。正確約分需要兩個能力: 一是看出分子與分母的公因數,第4題為此而安排。把分數的分子、分母同時除以2、5或3,是最常用的約分方法,學生對2、5、3的倍數的特征比較熟悉,因此先觀察分子、分母有沒有公因數2、5、3。至于分子與分母同時除以7、11、13等數的約分,稍后再作安排。二是識別一個分數是不是最簡分數。如果不是最簡分數則需要約分,如果是最簡分數則不能約分,第5題進行這方面的判斷。這兩個能力是相互依存、相互影響的。判斷一個分數不是最簡分數,一定發現了分子、分母除1以外的公因數。反之,分子與分母除1以外,找不到其他公因數,就判斷這個分數是最簡分數。約分的時候,必須把分子、分母除以相同的數,學生往往在這一點上發生錯誤,第6題能給學生這方面的體會。
第8~15題是分數的意義、基本性質的綜合練習。第8、9題在分數與除法相互改寫時,還要應用分數的基本性質。第10題把最簡分數與真分數兩個概念聯系起來,才能理解最簡真分數。第11題先約分,再比較大小就非常容易。第12~15題的分數加、減計算,計量單位改寫,小數化成分數,解決求一個數是另一個數的幾分之幾的實際問題,都提出把結果約成最簡分數的要求。增加習題的知識容量,把新舊知識結合應用,能幫助學生溫故知新,不斷提高能力。
例4教學通分,重點放在通分的含義和方法上。把34和56改寫成分母相同而大小不變的分數,是一個具有挑戰性的問題。學生對分數改寫成大小不變的另一個分數并不陌生,在學習分數的基本性質的時候,曾經多次進行過這樣的改寫。把兩個分母不同的分數改寫成分母相同的分數,是首次遇到的新問題。思考的焦點是改寫成分母是幾的分數,只要確定新的分母,分別改寫兩個分數就容易了。教材讓學生憑數感,主動聯系公倍數的知識和分數的基本性質,獨立進行改寫分數的活動。把兩個分數改寫成分母相同、大小不變的分數就是通分。可見,這道例題未教通分之前就讓學生嘗試通分,先積累把34和56都化成分母是12或分母是24的分數的切身體驗,為理解通分的含義,有意義地接受教材關于通分的講述作了充分的準備。
公分母是通分的關鍵。例題有層次地教學公分母的知識: 首先聯系34和56的改寫,讓學生知道12、24是公分母,是34和56的分母的公倍數;然后比較34和56以12為公分母和以24為公分母的改寫,體會什么數作公分母比較簡便,得出一般用兩個分母的最小公倍數作公分母。
例4只教學通分的含義和關于公分母的知識,不再另行教學怎樣通分。這是因為34和56改寫成分母是12與24的分數就是通分,不需要再重復。學生經過“試一試”,應用通分的知識,能夠掌握通分的步驟與方法。同時又考慮到“試一試”畢竟是學生第一次進行通分,所以在怎樣表達兩個分數的公分母、怎樣應用分數的基本性質以及書寫通分的過程和結果的一般格式等方面,都給予較具體的指導。
練習十二第1~4題配合例4的教學。第1題兩個長方形里的涂色部分分別用12和23表示,這兩個分數通分后分別化成36和46。在兩個長方形里表示出通分的結果,讓學生聯系直觀圖形體會通分的意義,感受異分母分數化成同分母分數,便于比較和計算。第2題是尋找公分母的基礎練習,進一步明白兩個異分母分數的公分母,是它們分母的最小公倍數。把求最小公倍數的經驗應用到求公分母上來。第3題讓學生深刻體會兩點: 一是通分不能改變分數的大小,通分后的分數必須與原來分數的大小相等,否則會發生類似第(1)小題的錯誤;二是通分時的公分母要用兩個分數分母的最小公倍數,像第(2)小題那樣的通分不夠簡單。
3、 比較分數的大小,體驗策略與方法的多樣性。
在三年級的教材里,已經教學借助圖形比較同分母分數的大小和分子是1的異分母分數的大小。在本冊教材“認識分數”時,比較了一個分數與一個小數的大小。所以說,學生已經有一些比較分數大小的經驗。在此基礎上,例5教學比較兩個分數的大小,有兩個顯著的特點: 一是在現實情境中收集數學信息,把實際問題抽象成數學問題。看同一本故事書,小芳看了這本書的35,小明看了這本書的49。這兩個分數都把一本故事書看作單位“1”,分別平均分成5份和9份,看了其中的3份和4份。因此,比誰看的頁數多,只要比較35和49這兩個分數的大小。例題非常重視這些思考活動,提示學生想到“比較這兩個分數的大小”,用數學的方法解決實際問題。在這樣的過程中,能回憶起有聯系的知識,激活相關的技能。二是先讓學生獨立解決問題,再交流方法,鼓勵策略、方法多樣化。35與49是分子、分母都不相同的分數,比較它們的大小對學生來說是新的問題。聯系分數的意義、通分和分數化成小數等知識,能夠找到許多解決問題的方法。讓學生獨立解決新穎的問題,有利于創新精神和實踐能力的發展。各種方法都很有特色,第一種方法數形結合,在相同的長方形里分別表示兩個分數,直觀看出哪個分數比較大。第二種方法及時應用學到的通分知識,把異分母分數化成同分母分數進行比較,運用了轉化的策略。第三種方法以12為中介,把兩個分數分別與12比較大小,間接得到35和49的大小關系,思維靈活、快捷,策略巧妙。學生中還會有其他的方法,組織充分的交流,相互理解和借鑒,能體驗解決問題策略的多樣性。
比較分數大小的練習,安排很有層次。在鞏固基礎知識、掌握基本技能的基礎上靈活運用知識,發展數感。“練一練”緊接例題,要求先通分,再比較分數的大小。這樣安排有兩個原因: 一是能鞏固通分的知識,形成通分技能,把分數加、減計算需要的基礎練扎實。二是這種策略、方法適用于比較分數大小的通常情況,用得比較多。練習十二第5~11題都配合例5的教學,第5題寫出的三組分數比較大小各有特點,35和58通分或化成小數都很方便;16和49通分比較方便;114和1310如果寫成帶分數,分別是2和真分數、1和真分數的合并。第6題根據分數的意義比較分子相同、分母不同的分數的大小,能進一步體驗分數的分子、分母及分數單位的含義,還能從中概括出分子相同,分母大的分數比較小的結論。第8題在使用常規比較方法的同時,留出了創新的空間。如比較23和78的大小,從13>18得到23<78;比較134與103的大小,如果把它們都化成帶分數,就只要比較14與13的大小。教師對這些有創意的方法要給予鼓勵,但不作為基本方法要求全體學生都掌握。第9題通過8個分數與12比較大小,能夠發現一些規律: 如分子乘2的積仍小于分母的分數比12小,分母除以2的商小于分子的分數比12大……這對發展數感很有好處。
分數的基本性質的教案14
《分數基本性質》教學設計
教學內容
人教版新課標教科書小學數學第十冊第75~77頁例
1、例2。教案背景
本課題是人教版五年級數學下冊第四單元的內容,分數的基本性質在分數教學中占有十分重要的地位,它是約分、通分的理論依據,而約分、通分又是分數四則運算的重要基礎。只有理解和掌握分數的基本性質,能比較熟練地進行約分和通分,才能應用四則運算的法則正確、迅速地進行分數四則運算。因此,分數的基本性質是分數的意義和性質這一單元的教學重點之一。掌握分數與除法的關系,以及除法中被除數、除數同時擴大或同時縮小相同的倍數商不變的規律,是學好分數基本性質的基礎。
教學目標
1、知識與技能目標:
(1)經歷探索分數的基本性質的過程,理解分數的基本性質。(2)能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數
2、過程與方法目標:
(1)經歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分數的基本性質作出簡要的、合理的說明。(2)培養學生的觀察、比較、歸納、總結概括能力
(3)能根據解決問題的需要,收集有用的信息進行歸納,發展學生的歸納、推理能力。
3、情感態度與價值觀目標:
(1)經歷觀察、操作和討論等數學學習活動,使學生進一步體驗數學學習的樂趣。
(2)鼓勵學生敢于發現問題,培養學生勇于解決問題的學習品質
教材分析
本節教材圍繞著分數基本性質的得出與應用,安排了兩道例題。通過例
1,概括出分數基本性質。通過例2,運用、鞏固分數的基本性質。考慮到分數的基本性質是建立在分數大小相等這一概念基礎之上的。而兩個分數的大小相等,并不意味著兩個分數的分子、分母分別相同。這是分數與整數的區別。因此,教材在例1中,先讓學生通過折紙、涂色,感悟1/
2、2/
4、4/8三個分數的分子、分母雖然不同,但是分數的大小是相等的。接著引導學生探究三個分數的分子和分母是按照什么規律變化的。先從左往右看,再反過來從右往左看,引導學生發現三個分數的分子和分母是怎樣變化的。然后,要求學生自己進一步舉例驗證,并根據這些例子歸納出變化的規律。在此基礎上,教材給出了分數的基本性質。由于分數和整數除法有著內在聯系,分數的分子相當于除法中的'被除數,分母相當于除數,分數值相當于除法中的商,所以分數的基本性質也可以利用整數除法中商不變的性質來說明。充分利用這一聯系,有利于促進學習的遷移。因此,教材在導出分數的基本性質之后,又提出了一個問題,讓學生根據分數與除法的關系以及整數除法中商不變的性質,來說明分數的基本性質。為了幫助學生在運用的過程中鞏固和加深對分數基本性質的理解,教材安排了例2,引導學生運用分數的基本性質,按指定的分母把兩個分數都化成分母相同而大小不變的分數。這樣不僅可以幫助學生掌握分數的基本性質,而且也能為后面學習約分、通分做好準備。練習中適當減少了單純依靠計算解決的練習題,增加了聯系現實生活,可以依據分數基本性質解決的實際問題。如練習十四的第2題、第5題、第9題和第10題。有利于通過應用,促進學生掌握分數的基本性質,也有利于培養學生的數學應用意識。在本節教材中,還穿插安排了一個“生活中的數學”欄目,介紹了分數在日常生活中的一些應用。涉及洗手液的使用方法、足球比賽的進程、照相機的曝光速度。這些例子,有助于引起學生的興趣,關注分數在現實生活中的種種應用。教學重點
探索、發現和掌握分數的基本性質,并能運用分數的基本性質解決問題。教學難點
自主探究、歸納概括分數的基本性質。
教法
引撥法,多媒體教學法,實驗法,歸納法,談話法等。學法
猜想驗證實驗法,討論法,小組合作法等。學生分析
五年級學生對于抽象的數學學習會感覺枯燥無味,所以要使學生對于本
節課有很好的收獲,就必須得給本節課的學習加以趣味性,并且讓學生經歷知識的形成過程,以幫助學生鞏固所學知識。
教學過程:
一、故事引人,揭示課題:師:同學們,你們喜歡看《喜羊羊與灰太狼》的故事嗎?生:喜歡。
師:老師這里有一個慢羊羊村長分餅的故事。羊村的小羊最喜歡吃村長
做的餅。有一天,村長做了三塊大小一樣的餅分給小羊們吃,它先把第一塊餅的1/2分給懶羊羊。再把第二塊餅的2/4分給喜羊羊。最后把第三塊餅的4/8分給美羊羊。懶羊羊不高興地說:“村長不公平,他們的多,我的少。”
師:孩子們,村長公平嗎?小朋友們,你知道哪只羊分得多?生1:不公平,美羊羊分得多。
生2:公平,因為他們分得一樣多。
二、探究新知,解決問題
(一)驗證猜想
師:到底誰的猜想是正確地呢?讓我們一起來驗證一下。
1、折一折,畫一畫,剪一剪,比一比(1)折
請同學們拿出三張同樣大小的正方形紙,把每張紙都看作單位“1”。用
手分別平均折成2份、4份、8份。
(2)畫
在折好的正方形紙上,分別把其中的2份、4份、8份畫上陰影。(3)剪把正方中的陰影部分剪下來。
(4)比把剪下的陰影部分重疊,比一比結果怎樣。要求:
1)三人為一小組,小組中每人選擇一個不同的分數,先折一折,再畫一
畫,剪一剪的方法把它表現出來。
2)三人做好之后,將三副圖進行比較,看看能發現什么?3)學生匯報。
請這一小組同學談談發現:通過比較,三副圖陰影部分面積一樣,因而
三個分數一樣大。
4)教師課件出示1/
2、2/
4、4/8相等的過程。
2、師:三只小羊分得的餅同樣多,仔細觀察這三個分數什么變了?什么沒變?
小組合作,學生仔細觀察,討論,學生匯報小結:它們的分子和分母變化了,但分數的大小沒變。
(二)初步概括分數基本性質算一算:
1、師:這三個分數的分子、分母都不相同,為什么分數的大小卻相等的?你們能找出它們的變化規律嗎?請三人為一組,討論這個問題。
2、學生小組合作,觀察,討論。
自學提示:
A、從左到右觀察,想一下,這三個分數的分子、分母怎樣變化才能得到下一個分數,且分數的大小不變呢。
B、從右到左觀察,想一下,這三個分數的分子、分母怎樣變化才能得
到下一個分數,且分數的大小不變呢。
3、小組匯報生:我發現了1/2的分子與分母同時乘以2得到了2/4,1/2的分子和分
母同時乘以4得到了4/8。
請二名同學重復。
師:你們想得一樣嗎?我把1/2的分子分母同時乘2得到了2/4,1/2的
分子和分母同時乘4又得到了4/8。在這個分數中我們是把分子分母同時乘2,分數的大小不變,那如果我們把分數的分子分母同時乘5,分數的大小變嗎?同時乘以呢?那你們能不能根據這個式子來總結一個規律呢?(課件同時出示變化過程)
生回答:一個分數的分子分母同時乘相同的數,分數的大小不變。請一至二名同學回答。
師板書:分數的分子分母同時乘相同的數,分數的大小不變。
師:誰來舉一個例子。指名三位同學回答,師板書,并問:同時乘以了幾?師:這樣的例子我們可以舉出很多很多,剛才我們是從左往右觀察的,如果把這個式子從右往左觀察,你們又會發現什么呢?(點擊課件出示)請一同學回答,生:我們發現了4/8的分子與分母同時除以2得了2/4,4/8的分子與分母同時除以4得到了1/2。課件點擊出示同時變化過程。師:嗯,分數的分子分母同時除以2分數的大小不變,如果同時除以5大小會變嗎?同時除以呢?能不能根據這個式子再總結出一句話呢?
生:分數的分子分母同時除以相同的數,分數的大小不變。(二名學生重復)師板書:或者除以
師:你能根據剛才總結的規律舉一個例子嗎?
讓三名學生舉出例子,師板書。并問:分子分母同時除以了幾?
4、(1)師:根據分數的這一變化規律,你認為這個式子對嗎?為什么?(課件出示下列式子)
43=4433??=169(強調“相同的數”)5 4 ???(強調“同時”)
學生回答,并說明理由。
(2)師:分數的分子、分母都乘以或除以相同的數,分數的大小不變。這里“相同的數”是不是任何的數都可以呢?我們一起來看這樣一個分數。(課件出示式子:?0 40 343????)
師:這個式子成立嗎?生:不成立,師:為什么生:因為0不能作除數,師:0不能作除數,所以這個式子是錯誤的。
師:我再說一個式子,我不乘以0了,我除以0,這個式子成立嗎?(課件出示:4 3除以0。)
生:不成立,因為在分數當中分母相當于除數,除數不能為0。師:對,因為分數的分子、分母都乘0,則分數成為0 0,在分數里分母不能為0,所以分數的分子、分母不能同時乘0,又因為在除法里零不能作除數,所以分數的分子、分母也不能同時除以0。所以這兩個式子都是不成立的?我們剛才總結的分數的分子分母同時乘或者除以相同的數,要0除外。(師板書0除外)
師:到現在為止這個規律我們就總結完了,那在這個規律里你覺得什么地方需要我們注意一下呢?生:同時和相同的數
師:“同時”和“相同的數”(師將重點詞語打點),大家想得一樣嗎?這個就是我們今天這節課要學習的分數的基本性質。(師板書課題:分數的基本性質)
師:我相信懶羊羊學會了分數的基本性質,那就不會生氣了,那咱們同學們千萬不要犯它那樣的錯誤了。下面讓我們一起把分數的基本性質邊讀邊記。生齊讀二遍。
師:這個分數的基本性質特別有用,我們可以根據分數的基本性質把一個分數化成和它相等的另外一個分數。我們一起來看例2.三、運用規律、自學例題
1、例2:把2/3和10/24化成分母是12而大小不變的分數。(課件出示)請一同學讀題。
2、分組討論
問:分子分母應怎樣變化?變化的依據是什么?
3、讓生獨立完成,完成后和同位的同學說一說你是怎樣想的。
每題請二名同學回答,(課件點擊出示答案)
4、分數的基本性質與商不變性質
師:能否用商不變性質來說明分數的基本性質?生:因為被除數÷除數=除數被除數
(除數不能為0)
所以被除數與除數同時擴大或縮小相同的倍數,就相當于分子、分母同
時擴大或縮小相同的倍數(0除外)。因此,商不變就相當于分數的大小不變。
四、課堂運用(課件出示)
1、判斷。(手勢表示,并說明理由。)
(1)分數的分子、分母都乘以或除以相同的數,分數的大小不變。()(2)把25 15的分子縮小5倍,分母也同時縮小5倍,分數的大小不變。()
(3)4 3的分子乘以3,分母除以3,分數的大小不變。()
(4)()
3、找朋友游戲:
拿出課前發的分數紙,并看清手中的分數。與2 1相等的,舉起自己的分數后請到右邊,與32相等的到左邊,與4 3相等的到講臺。
五、拾撿碩果,拓展延伸
1、看到同學們這么自信的回答,老師就知道今天大家的收獲不少,誰來說說這節課你都收獲了哪些東西?
2、拓展延伸:
村長運用什么規律來分餅的?如果沸羊羊要四塊,村長怎么分才公平呢?如果要五塊呢
教學反思
我講的這節課內容是人教版五年級教材《分數的基本性質》,本節課的主要目標是:使學生理解分數基本性質,并會用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。在課堂中,我充分利用學生的生活經驗,設計生動有趣的故事《羊村村長分餅》,激發學生的學習興趣,展開課堂教學。
1、教學的整個過程是學生親自驗證的過程,通過“驗證”學生感受了數學的嚴謹性。設計以“猜想--觀察--驗證--概括--深化--提高”的環節,把知識的形成過程展現在學生的面前,使學生在掌握分數的基本性質的同時,感知到數學知識的形成過程,在這一過程中注意滲透學生自學方法、解決問題的策略、體會數學知識與生活的緊密聯系,同時教給學生學會學習,學會思考的方法。在師生共同協作的過程中,達到課堂教學方法的最優化,提高了課堂教學效益。
2、在推導規律的過程中,抓住分數的分子、分母按怎樣的規律變化而分數大小不變這一點,通過動手操作、實踐,引導學生自己去發現、證實并歸納:分數的分子分母同時乘以或除以一個相同的數(零除外),分數的大小不變。在這關鍵處,教師又進一步發動全班討論,把問題引向縱深,這種教學模式既重視學生自主參與,相互合作的發揮,又有利于學生展現自己知識的建構過程,不僅知其結果,而且更了解自己得出結果的過程和先決條件,促進知識與能力的同步發展。
3、教學中取舍教材、取舍手段,著眼于學生的學習。教學中既運用了信息
技術,又把傳統教學手段有機地結合,讓資源充分、有效地發揮作用,優化教師的教學手段,提高課堂教學效率。
分數的基本性質的教案15
這節課,戴老師教師教態自然、語言清晰、數學語言表述準確。著重培養了學生通過動手操作的活動來讓學生主動探究分數的基本性質,掌握分數的基本性質在生活中的實際應用,同時培養了學生積極參與,團結合作,主動探索,引導觀察鈫捬罷夜媛桑發現規律,我覺得這是一堂充滿生命活力的課堂,能促進學生全面發展的課堂,體現新課標理念的課堂,從中我得到了一些鮮活的經驗和有益的啟示。具體概括以下幾點?
一、教學思路清晰,目標明確,重難點突出。
教師根據教學內容,因材施教地制定了教學思路。這節課以鈥湸瓷棖榫車既胄驢沃傅嘉探索,整個教學思路清晰。這節課戴老師突出培養學生動手操作,主動探究的訓練,通過用三張同樣大的長形紙折一張的、涂色等活動來探索分數分子、分母的變化規律,從而讓學生發現規律,突出重難點的內容,整個教學做到詳略得當,重難點把握準確。這樣設計符合學生年齡特點和認知規律,體現了以學生為主體的'學習過程,培養了學生的學習能力?
二、創設情境,重視操作活動,發揮主體作用。
老師能創造機會,讓學生各種感官參與學習,把學生推到主體地位。讓學生獲得豐富感性認識,使抽象知識具體化、形象化。引導學生比較觀察三幅圖的異同之處,分數的分子分母的變化過程,從而證實變化的規律,整個操作過程層次分明,通過折涂,學生動手、動腦、動口,人人參與學習過程,不是操作而操作,而是把操作,理解概念,讓學生觀察三個圖形來說明概念,降低了難度。通過操作,讓學生既學得高興又充分理解知識。形象直觀地推導了分數的基本性質的概念,這樣概念形成過程十分清晰,充分培養了學生自主探索的能力,把被動地接受知識變為主動地獲取知識,達到教學目的。
三、練習設計具有層次性,開放性。
由淺入深由易到難的設計,既使學生牢固的掌握了所學的知識,鞏固了本節課的基礎知識,又訓練了學生的思維。激發了學生的學習興趣。
【分數的基本性質的教案】相關文章:
分數的基本性質教案04-04
分數的基本性質教案合集六篇11-27
【精華】分數的基本性質教案3篇10-23
實用的分數的基本性質教案4篇11-08
分數的基本性質教案匯編五篇11-13
分數的基本性質教案15篇(優選)08-06
分數的基本性質的教案(錦集15篇)10-10
分數的基本性質教案范文匯編9篇10-19
五年級數學教案:分數的基本性質04-08