實用的高中數學說課稿三篇
在教學工作者實際的教學活動中,總不可避免地需要編寫說課稿,借助說課稿可以讓教學工作更科學化。那么寫說課稿需要注意哪些問題呢?以下是小編幫大家整理的高中數學說課稿3篇,歡迎閱讀,希望大家能夠喜歡。
高中數學說課稿 篇1
尊敬的各位專家、評委:
上午好!
今天我說課的課題是人教A版必修2第二章第二節《直線與圓的位置關系》。
我嘗試利用新課標的理念來指導教學,對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。
一、教材分析
地位和作用
學生在初中的學習中已經了解直線與圓的位置關系,并知道可以利用直線與圓的焦點的個數以及圓心與直線的距離d與半徑r的關系判斷直線與圓的位置關系。但是,在初中學習時,利用圓心與直線的距離d與半徑r的關系判斷直線與圓的位置關系的方法卻以結論性的形式呈現。在高一學習了解析幾何后,要考慮的問題是如何掌握由直線和圓的方程判斷直線與圓的位置關系的方法。解決問題的方法主要是幾何法和代數法。其中幾何法應該是在初中學習的基礎上,結合高中所學的點到直線的距離公式求出圓心與直線的距離d后,比較與半徑r的關系。從而作出判斷,適可而止第引進用聯立方程組轉化為二次方程判別根的“純代數判別法”,并與“幾何法”欣賞比較,以決優劣,從而也深化了基本的“幾何法”。含參數的問題、簡單的弦的問題、切線問題等綜合問題作為進一步的拓展提高或綜合應用,也適度第引入課堂教學中,但以深化“判定直線與圓的位置關系”為目的,要控制難度。雖然學生學習解析幾何了,但是把幾何問題代數化無論是思維習慣還是具體轉化方法,學生仍是似懂非懂,因此應不斷強化,逐漸內化為學生的習慣和基本素質。
二、目標分析
(一)、教學目標
1、知識與技能
理解直線與圓的位置的種類;
利用平面直角坐標系中點到直線的距離公式求圓心到直線的距離;
會用點到直線的距離來判斷直線與圓的位置關系。
2、過程與方法
設直線L:ax+by+c=o,圓C:x2+y2+Dx+Ey+F=0,圓的.半徑為r,圓心(- ,- )到直線的距離為d,則判別直線與圓的位置關系的根據有以下幾點:
當d >r時,直線l與圓c相離;
當d =r時,直線l與圓c相切;
當d
3、情態與價值觀
讓學生通過觀察圖形,理解并掌握直線與圓的位置關系,培養學生數形結合的思想。
(二)、教學重點與難點
1、重點:直線與圓的位置關系的幾何圖形及其判斷方法。
2、難點:用坐標判斷直線與圓的位置關系。
三、教法學法分析
(一)、教法
教學過程是教師和學生共同參與的過程,啟發學生自主性學習,充分調動學生的積極性、主動性;有效地滲透數學思想方法,提高學生素質。根據這樣的原則和所要完成的教學目標,并為激發學生的學習興趣,我采用如下的教學方法:
1、啟發引導學生思考、分析、實驗、探索、歸納。
2、采用“從特殊到一般”、“從具體到抽象”的方法。
3、體現“對比聯系”、“數形結合”及“分類討論”的思想方法。
4、投影儀演示法。
在整個過程中,應以學生看,學生想,學生議,學生練為主體,教師在學生仔細觀察、類比、想象的基礎上通過問題串的形式加以引導點撥,對照,歸納,整理,只有這樣,才能喚起學生對原有知識的回憶,自覺地找到新舊知識的聯系,使新學知識更牢固,理解更深刻。
(二)、學法
建構主義學習理論認為,學習是學生積極主動地建構知識的過程,學習應該與學生熟悉的背景相聯系。在教學中,讓學生在問題情境中,經歷知識的形成和發展,通過觀察、操作、歸納、探索、交流、反思參與學習,認識和理解數學知識,學會學習,發展能力。
四、教學過程分析
(一)、教學過程設計
問題 設計意圖 師生活動
1、初中學過的平面幾何中,直線與圓的位置關系有幾類? 啟發學生由圖形獲取判斷直線與圓的位置關系的直觀認知,引入新課 師:讓學生之間進行討論,交流,引導學生觀察圖形,導入新課
生:看圖,并說出自己的看法
2、直線與圓的位置關系有幾種? 得出直線與圓的位置關系的幾何特征與種類 師:引導學生利用類比,歸納的思想,總結直線與圓的位置關系的種類,進一步神話數形結合的數學思想
生:學生觀察圖形,利用類比,歸納的思想,總結直線與圓的位置關
3、在初中,我們怎么樣判斷直線與圓的位置關系呢?如何用直線與圓的方程判斷他們之間的位置關系呢?
你能說出判斷直線與圓的位置關系的兩
種方法嗎? 使學生回憶初中的數學知識,培養抽象的概括能力。
抽象判斷呢直線與圓的位置關系的思路和方法 師:引導學生回憶初中判斷直線與圓的位置關系的思想過程
生:回憶直線與圓的位置關系的判斷過程
師:引導學生從集合的角度判斷直線與圓的方法
生:利用圖形,尋求兩種方法的數學思路
5、你能用兩種判斷直線與圓的位置關系的數學思路解決例1的問題嗎? 體會判斷直線與圓的位置關系的思想方法,關注量與量的之間的關系 師:指導學生閱讀教材書上的例1
生:閱讀教材書上的例1,并完成教材書上的136頁的練習題2
6、通過學習教材書上的例1,你能總結下判斷直線與圓的位置 關系的步驟嗎? 是學生熟悉判斷直線與圓的位置關系的基本步驟 生:于都例1
師:分析例1 ,并展示解答過程,啟發學生概括判斷直線與圓的位置關系的基本步驟,注意給學生留有思考的時間
生:交流自己總結的步驟
7、通過學習教材書上的例2,你能說明例2中體現的數學思想方法嗎? 進一步深化數形結合的數學思想 師:指導學生閱讀并完成教材書上的例2 ,啟發學生利用數形結合的數學思想解決問題
生:閱讀教材書上的例2 ,并完成137的練習題
8、通過例2的學習,你發現了什么? 明確弦長的運算方法 師:引導并啟發學生探索直線與圓的相交弦的求法
生:通過分析,抽象,歸納,得出相交弦的運算方法
9、完成教材書上的136頁的習題1234 鞏固所學過的知識,進一步理解和掌握直線與圓的位置關系 師:指導學生完成練習題
生:互相討論交流,完成練習題
10、課堂小結
教師提出下列問題讓學生思考
通過直線與圓的位置關系的判斷,你學到什么了?
判斷直線與圓的位置關系有幾種方法?他們的特點是什么?
如何求直線與圓的相交弦長?
(二)、作業設計
作業分為必做題和選擇題,必做題是對本節課學生知識水平的反饋,選擇題是對本節課內容的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生的自主發展、合作探究的學習氛圍的形成。
我設計了以下作業:
必做題:課后習題A 1,2,3;
選擇題:課后習題B1,2,3;
(三)、板書設計
板書要基本體現課堂的內容和方法,體現課堂進程,能簡明扼要反映知識結構及其相互關系:能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。
五、評價分析
學生學習的結果評價固然重要,但是更重要的是學生學習的過程評價。我采用了及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對本節是否有一個完整的集訓,并進行及時的調整和補充。
以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。
謝謝!
高中數學說課稿 篇2
尊敬的各位專家、評委:
上午好!
今天我說課的課題是人教A版必修1第二章第二節《對數函數》。
我嘗試利用新課標的理念來指導教學,對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。
一、教材分析
地位和作用
本章學習是在學生完成函數的第一階段學習(初中)的基礎上,進行第二階段的函數學習。而對數函數作為這一階段的重要的基本初等函數之一,它是在學生已經學習了指數函數及對數的內容,這為過渡到本節的學習起著鋪墊作用。“對數函數”這節教材,是在沒有學習反函數的基礎上研究的指數函數和對數函數的自變量和因變量之間的關系。同時對數函數作為常用數學模型在解決社會生活中的實例有著廣泛的應用,本節課的學習為學生進一步學習,參加生產和實際生活提供必要的基礎知識。
二、目標分析
(一)、教學目標
根據《對數函數》在教材內容中的地位與作用,結合學情分析,本節課教學應實現如下的教學目標:
1、知識與技能
(1)、進一步體會函數是描述變量之間的依賴關系的重要數學模型;
(2)、理解對數函數的概念、掌握對數函數的圖像和性質;
(3)、由實際問題出發,培養學生探索知識和抽象概括知識等方面的能力。
2、過程與方法
引導學生觀察,探尋變量和變量的對應關系,通過歸納、抽象、概括,自主建構對數函數的概念;體驗結合舊知識探索新知識,研究新問題的快樂。
3、情感態度與價值觀
通過對對數函數函數圖像和性質的探究過程,培養學生發現問題,探索問題,不斷超越的創新品質。在民主、和諧的教學氣氛中,促進師生的情感交流。
(二)教學重點、難點及關鍵
1、重點:對數函數的概念、圖像和性質;在教學中只有突出這個重點,才能使教材脈絡分明,才能有利于學生聯系舊知識,學習新知識。
2、 難點:底數a對對數函數的圖像和性質的影響。
[關鍵]對數函數與指數函數的類比教學。
由指數函數的圖像過渡到對數函數的圖像,通過類比分析達到深刻地了解對數函數的圖像及其性質是掌握重點和突破難點的關鍵,在教學中一定要使學生的.思考緊緊圍繞圖像,數形結合,加強直觀教學,使學生能形成以圖像為根本,以性質為主體的知識網絡,同時在立體的講解中,重視加強題組的設計和變形,使教學真正體現出由淺入深,由易到難,由具體到抽象的特點,從而突破重點、突破難點。
三、教法、學法分析
(一)、教法
教學過程是教師和學生共同參與的過程,啟發學生自主性學習,充分調動學生的積極性、主動性;有效地滲透數學思想方法,提高學生素質。根據這樣的原則和所要完成的教學目標,并為激發學生的學習興趣,我采用如下的教學方法:
1、啟發引導學生思考、分析、實驗、探索、歸納;
2、采用“從特殊到一般”、“從具體到抽象”的方法;
3、體現“對比聯系”、“數形結合”及“分類討論”的思想方法;
4、投影儀演示法。
在整個過程中,應以學生看,學生想,學生議,學生練為主體,教師在學生仔細觀察、類比、想象的基礎上通過問題串的形式加以引導點撥,與指數函數性質對照,歸納,整理,只有這樣,才能喚起學生對原有知識的回憶,自覺地找到新舊知識的聯系,使新學知識更牢固,理解更深刻。
(二)、學法
教給學生方法比教給學生知識更重要,本節課注重調動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:
1、對照比較學習法:學習對數函數,處處與指數函數相對照;
2、探究式學習法:學生通過分析、探索,得出對數函數的定義;
3、自主性學習法:通過實驗畫出函數圖像、觀察圖像自得其性質;
4、反饋練習法:檢驗知識的應用情況,找出未掌握的內容及其差距。
四、教學過程分析
(一)、教學過程設計
1、創設情境,提出問題。
在某細胞分裂過程中,細胞個數y是分裂次數x的函數y=2x,因此,知道x的值(輸入值是分裂次數)就能求出y的值(輸出值為細胞的個數),這樣就建立了一個細胞個數和分裂次數x之間的函數關系式。
問題一:這是一個怎樣的函數模型類型呢?
設計意圖
復習指數函數
問題二:現在我們來研究相反的問題,如果知道了細胞的個數y,如何求分裂的次數x呢?這將會是我們研究的哪類問題?
設計意圖
為了引出對數函數
問題三:在關系式x=log2y每輸入一個細胞的個數y的值,是否一定都能得到唯一一個分裂次數x的值呢?
設計意圖
(1)、為了讓學生更好地理解函數;
(2)、為了讓學生更好地理解對數函數的概念。
2、引導探究,建構概念。
(1)、對數函數的概念:
同樣,在前面提到的發射性物質,經過的時間x年與物質剩余量y的關系式為y=0.84x,我們也可以把它改成對數式x=log0.84y,其中x年夜可以看作物質剩余量y的函數,可見這樣的問題在現實生活中還是不少的。
設計意圖
前面的問題情景的底數為2,而這個問題情景的底數是0.84,我認為這個情景并不是多余的,其實它暗示了對數函數的底數與指數函數的底數一樣有兩類。
但是在習慣上,我們用x表示自變量,用y表示函數值。
問題一:你能把以上兩個函數表示出來嗎?
問題二:你能得到此類函數的一般式嗎?
設計意圖
體現出了由特殊到一般的數學思想
問題三:在y=logax中,a有什么限制條件嗎?請結合指數式給以解釋。
問題四:你能根據指數函數的定義給出對數函數的定義嗎?
問題五:x=logay與y=ax中的x,y的相同之處是什么?不同之處是什么?
設計意圖
前四個問題是為了引導出對數函數的概念,然而,光有前四個問題還是不夠的,學生最容易忽略或最不容易理解的是函數的定義域,所以設計這個問題是為了讓學生更好地理解對數函數的定義域。
(2)、對數函數的圖像與性質
問題:有了研究指數函數的經歷,你覺得下面該學習什么內容了?
設計意圖
提示學生進行類比學習
合作探究1:借助計算器在同一直角坐標系中畫出下列兩組函數的圖像,并觀察各族函數圖像,探求他們之間的關系。
y=2x;y=log2x y=( )x,y=log x
合作探究2:當a>0,a≠ 1,函數y=ax與y=logax圖像之間有什么關系?
設計意圖
在這兒體現“從特殊到一般”、“從具體到抽象”的方法。
合作探究3:分析你所畫的兩組函數的圖像,對照指數函數的性質,總結歸納對數函數的性質。
設計意圖
學生討論并交流各自的而發現成果,教師結合學生的交流,適時歸納總結,并板書對數函數的性質)。問題1:對數函數y=logax( a>0,a≠1,)是否具有奇偶性,為什么?
問題2:對數函數y=logax( a>0,a≠1,),當a>1時,x取何值,y>0,x取何值,y<0,當0 問題3:對數式logab的值的符號與a,b的取值之間有何關系? 知識拓展:函數y=ax稱為y=logax的反函數,反之,也成立,一般地,如果函數y=f(x)存在反函數,那么它的反函數記作y=f-1(x)。 3、自我嘗試,初步應用。 例1:求下列函數的定義域 y=log0.2(4-x)(該題主要考查對函數y=logax的定義域(0,+∞)這一限制條件,根據函數的解析式求得不等式,解對應的不等式。) 例2:利用對數函數的性質,比較下列各組數中兩個數的大小: (1)、㏒2 3.4,log2 3.8; (2)、log0.5 1.8,log0.5 2.1; (3)、log7 5,log6 7 (在這兒要求學生通過回顧指數函數的有關性質比較大小的步驟和方法,完成完成前兩題,最后一題可以通過教師的適當點撥完成解答,最后進行歸納總結比較數的大小常用的方法) 合作探究4:已知logm 4 設計意圖 該題不僅運用了對數函數的圖像和性質,還培養了學生數形結合、分類討論等數學思想。 4、當堂訓練,鞏固深化。 通過學生的主體性參與,使學生深刻體會到本節課的主要內容和思想方法,從而實現對知識的再次深化。 采用課后習題1,2,3. 5、小結歸納,回顧反思。 小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。 (1)、小結: ①對數函數的概念 ②對數函數的圖像和性質 ③利用對數函數的性質比較大小的一般方法和步驟, (2)、反思 我設計了三個問題 ①、通過本節課的學習,你學到了哪些知識? ②、通過本節課的學習,你最大的體驗是什么? ③、通過本節課的學習,你掌握了哪些技能? (二)、作業設計 作業分為必做題和選做題,必做題是對本節課學生知識水平的反饋,選做題是對本節課內容的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生的自主發展、合作探究的學習氛圍的形成。 我設計了以下作業: 必做題:課后習題A 1,2,3; 選做題:課后習題B 1,2,3; (三)、板書設計 板書要基本體現課堂的內容和方法,體現課堂進程,能簡明扼要反映知識結構及其相互關系:能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。 五、評價分析 學生學習的結果評價固然重要,但是更重要的是學生學習的過程評價。我采用了及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對本節是否有一個完整的集訓,并進行及時的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。 謝謝! 一、教材分析 (一)教材的地位和作用 “一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發展,又是本章集合知識的運用與鞏固,也為下一章函數的定義域和值域教學作鋪墊,起著鏈條的作用。同時,這部分內容較好地反映了方程、不等式、函數知識的內在聯系和相互轉化,蘊含著歸納、轉化、數形結合等豐富的數學思想方法,能較好地培養學生的觀察能力、概括能力、探究能力及創新意識。 (二)教學內容 本節內容分2課時學習。本課時通過二次函數的圖象探索一元二次不等式的解集。通過復習“三個一次”的關系,即一次函數與一元一次方程、一元一次不等式的關系;以舊帶新尋找“三個二次”的關系,即二次函數與一元二次方程、一元二次不等式的關系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數學中的和諧美,體驗成功的樂趣。 二、教學目標分析 根據教學大綱的要求、本節教材的特點和高一學生的認知規律,本節課的教學目標確定為: 知識目標——理解“三個二次”的關系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。 能力目標——通過看圖象找解集,培養學生“從形到數”的轉化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。 情感目標——創設問題情景,激發學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。 三、重難點分析 一元二次不等式是高中數學中最基本的不等式之一,是解決許多數學問題的重要工具。本節課的重點確定為:一元二次不等式的解法。 要把握這個重點。關鍵在于理解并掌握利用二次函數的圖象確定一元二次不等式解集的方法——圖象法,其本質就是要能利用數形結合的思想方法認識方程的解,不等式的解集與函數圖象上對應點的橫坐標的內在聯系。由于初中沒有專門研究過這類問題,高一學生比較陌生,要真正掌握有一定的難度。因此,本節課的難點確定為:“三個二次”的關系。要突破這個難點,讓學生歸納“三個一次”的關系作鋪墊。 四、教法與學法分析 (一)學法指導 教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此在教學中要不斷指導學生學會學習。本節課主要是教給學生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學習方法,這樣做增加了學生自主參與,合作交流的機會,教給了學生獲取知識的途徑、思考問題的方法,使學生真正成了教學的主體;只有這樣做,才能使學生“學”有新“思”,“思”有新“得”,“練”有新“獲”,學生也才會逐步感受到數學的美,會產生一種成功感,從而提高學生學習數學的'興趣;也只有這樣做,課堂教學才富有時代特色,才能適應素質教育下培養“創新型”人才的需要。 (二)教法分析 本節課設計的指導思想是:現代認知心理學——建構主義學習理論。 建構主義學習理論認為:應把學習看成是學生主動的建構活動,學生應與一定的知識背景即情景相聯系,在實際情景下進行學習,可以使學生利用已有知識與經驗同化和索引出當前要學習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。 本節課采用“誘思引探教學法”。把問題作為出發點,指導學生“畫、看、說、用”。較好地探求一元二次不等式的解法。 五、課堂設計 本節課的教學設計充分體現以學生發展為本,培養學生的觀察、概括和探究能力,遵循學生的認知規律,體現理論聯系實際、循序漸進和因材施教的教學原則,通過問題情境的創設,激發興趣,使學生在問題解決的探索過程中,由學會走向會學,由被動答題走向主動探究。 (一)創設情景,引出“三個一次”的關系 本節課開始,先讓學生解一元二次方程x2-x-6=0,如果我把“=”改成“>”則變成一元二次不等式x2-x-6>0讓學生解,學生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構造懸念,激活學生的思維興趣。 為此,我設計了以下幾個問題: 1、請同學們解以下方程和不等式: ①2x-7=0;②2x-7>0;③2x-7<0 學生回答,我板書 【高中數學說課稿】相關文章: 高中數學的說課稿04-19 高中數學說課稿06-13 高中數學《數列》說課稿01-18 高中數學全套說課稿06-08 高中數學說課稿06-12 高中數學優秀說課稿03-08 高中數學數列說課稿06-07 高中數學數列說課稿(優秀)07-16 高中數學說課稿(集合)06-17 關于高中數學說課稿05-15高中數學說課稿 篇3