<address id="ousso"></address>
<form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
  1. 應屆畢業生網>主頁 > 手抄報 > 數學手抄報 > 數學手抄報資料:韓信點兵

    數學手抄報資料:韓信點兵

    發布時間:2017-04-10來源:手抄報資料網

      韓信點兵又稱為中國剩余定理,相傳漢高祖劉邦問大將軍韓信統御兵士多少,韓信答說,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。劉邦茫然而不知其數。

      我們先考慮下列的問題:假設兵不滿一萬,每5人一列、9人一列、13人一列、17人一列都剩3人,則兵有多少?

      首先我們先求5、9、13、17之最小公倍數9945(注:因為5、9、13、17為兩兩互質的整數,故其最小公倍數為這些數的積),然后再加3,得9948(人)。

      中國有一本數學古書「孫子算經」也有類似的問題:「今有物,不知其數,三三數之,剩二,五五數之,剩三,七七數之,剩二,問物幾何?」

      答曰:「二十三」

      術曰:「三三數之剩二,置一百四十,五五數之剩三,置六十三,七七數之剩二,置三十,并之,得二百三十三,以二百一十減之,即得。凡三三數之剩一,則置七十,五五數之剩一,則置二十一,七七數之剩一,則置十五,即得。」

      孫子算經的作者及確實著作年代均不可考。不過根據考證,著作年代不會在晉朝之后,以這個考證來說上面這種問題的解法,中國人發現得比西方早,所以這個問題的推廣及其解法,被稱為中國剩余定理。中國剩余定理(Chinese Remainder Theorem)在近代抽象代數學中占有一席非常重要的地位。

    欄目推薦
    熱點排行
    推薦閱讀

    <address id="ousso"></address>
    <form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
    1. 日日做夜狠狠爱欧美黑人