<address id="ousso"></address>
<form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
  1. 初中數學教案

    時間:2025-11-02 19:09:04 教案

    初中數學教案【熱門】

      作為一位兢兢業業的人民教師,通常需要用到教案來輔助教學,編寫教案有利于我們弄通教材內容,進而選擇科學、恰當的教學方法。如何把教案做到重點突出呢?下面是小編收集整理的初中數學教案,希望能夠幫助到大家。

    初中數學教案【熱門】

    初中數學教案1

      一、教材分析

      本節內容是人民教育出版社出版《義務教育課程實驗教科書(五四學制)數學》(供天津用)八年級下冊第十章整式第一節整式加減第2小節整式的加減。

      二、設計思想

      本節內容是學生掌握了“整式”有關概念的延展學習,為后繼學習整式運算、因式分解、一元二次方程及函數知識奠定基礎,是“數”向“式”的正式過度,具有十分重要地位。

      八年級學生已具有了較強的數的運算技能和“合并”的意識(解一元一次方程中用)同時也具有初步的觀察、歸納、探索的技能。因此,我結合教材,立足讓每個學生都有發展的宗旨,我采用合作探究的學習方式開展教學活動,通過設計有針對性、多樣式的問題引導學生,給學生提供充足的、和諧的探索空間讓學生學習。通過學習活動不但培養學生化簡意識,提升數學運算技能而且讓學生深刻體會到數學是解決實際問題的重要工具,增強應用數學的意識。

      三、教學目標:

      (一)知識技能目標:

      1、理解同類項的含義,并能辨別同類項。

      2、掌握合并同類項的方法,熟練的合并同類項。

      3、掌握整式加減運算的方法,熟練進行運算。

      (二)過程方法目標:

      1、通過探究同類項定義、合并同類項的方法的活動,培養學生觀察、歸納、探究的能力。

      2、通過合并同類項、整式加減運算的練習活動,提高學生運算技能,提升運算的準確率培養學生化簡意識,發展學生的抽象概括能力。

      3、通過研究引例、探究例1的'活動,發展學生的形象思維,初步培養學生的符號感。

      (三)情感價值目標:

      1、通過交流協商、分組探究,培養學生合作交流的意識和敢于探索未知問題的精神。

      2、通過學習活動培養學生科學、嚴謹的學習態度。

      四、教學重、難點:

      合并同類項

      五、教學關鍵:

      同類項的概念

      六、教學準備:

      教師:

      1、篩選數學題目,精心設置問題情境。

      2、制作大小不等的兩個長方體紙盒實物模型,并能展開。

      3、設計多媒體教學課件。(要凸顯①單項式中系數、字母、指數的特征②長方體紙盒立體圖、展開圖。)

      學生:

      1、復習有關單項式的概念、有理數四則運算及去括號的法則)

      2、每小組制作大小不等的兩個長方體紙盒模型。

    初中數學教案2

    從不同方向看

      教學目標

      1.通過實驗,使學生相信經過大量的重復實驗后得到的頻率值確實可以作為隨機事件每次發生的機會的估計值,體會隨機事件中所隱含著的確定性內涵。

      2.使學生知道,通過實驗的方法,用頻率估計機會的大小,必須要求實驗是在相同條件下進行的。且在相同條件下,實驗次數越多,就越有可能得到較好的估計值,但個人所得的值也并不一定相同。

      3.培養學生合作學習的能力,并學會與他人交流思維的過程和結果。

      教學重難點

      重點:頻率與機會的關系。

      難點:如何用頻率估計機會的大小?教學準備數枚相同的圖釘。

      教學過程

      一、提出問題

      上一節課,通過一系列的實驗和觀察,我們已經知道:實驗是估計機會大小的一種方法。我們可以通過實驗,觀察某事件出現的頻率,當頻率值逐漸穩定時,這個值就可以作為我們對該事件發生機會的估計。

      實際上,在前面的問題中,即使不做實驗,也可以設法預先推測出事件發生的機會,為什么還要花大量時間去進行實驗呢?

      下面讓我們看另一類問題:

      一枚圖釘被拋起后釘尖觸地的機會有多大?

      二、分組實驗

      1.兩個學生一個小組,一人拋擲,一人記錄

      每個小組拋擲40次,記錄出現釘尖觸地的頻數

      教師負責把各小組的結果登錄在黑板上

      2.然后把每小組的結果合起來,分別計算拋擲80次、 120次、 160次、 200次、 240次、 180次、 320次、 360次、 400次、 480次、 520次、 560次后出現釘尖觸地的頻數及頻率

      3.列出統計表,繪制折線圖

      4.根據實驗結果估計一下釘尖觸地的機會是百分之幾?

      5.課本第105頁表15.2.1和圖15.2.2是一位同學在拋擲圖釘的實驗中畫的`統計表和折線圖。這與你實驗的結果相同嗎?為什么?

      三、深入思考

      如果兩個小組使用的是兩種不同形狀的圖釘,那么這兩種圖釘釘尖觸地的機會相同嗎?

      能把兩個小組的實驗數據合起來進行實驗嗎?

      四、概括小結

      從上面的問題可以看出:

      1.通過實驗的方法用頻率估計機會的大小,必須要求實驗是在相同條件下進行的。比如,以同樣的方式拋擲同一種圖釘。

      2.在相同的條件下,實驗次數越多,就越有可能得到較好的估計值,但每人所得的值也并不一定相同。

      五、用心觀察

      我們已經知道,在相同條件下,實驗次數越多,就越有可能得到較好的估計值。那么,總共要做多少次實驗才認為得到的結果比較可靠呢?

      觀察課本第105頁表15.2.1和圖15.2.2 。

      當實驗進行到多少次以后,所得頻率值就趨于平穩了?

      ( 小結:實驗到頻率值較穩定時,結果比較可靠。這個頻率值也就可以作為這個事件發生機會的估計值。 )

      六、鞏固練習

      課本第107頁練習第1 、 2題。

      七、課堂小結

      這節課你有什么收獲?還有哪些問題需要老師幫你解決的?

      注意:通過實驗的方法用頻率估計機會大小,必須要求實驗是在相同條件下進行的。

      八、布置作業

      1 、課本第108頁習題15.2第2題

      2 、課本第106頁做一做

      2 、數字之積為奇數與偶數的機會

    初中數學教案3

      4.1二元一次方程

      【教學目標】

      知識與技能目標

      1、通過與一元一次方程的比較,能說出二元一次方程的概念,并會辨別一個方程是不是

      二元一次方程;

      2、通過探索交流,會辨別一個解是不是二元一次方程的解,能寫出給定的二元一次方程的解,了解方程解的不唯一性;

      3、會將一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式。過程與方法目標經歷觀察、比較、猜想、驗證等數學學習活動,培養分析問題的能力和數學說理能力;

       情感與態度目標

      1、通過與一元一次方程的類比,探究二元一次方程及其解的概念,進一步培養運用類比轉化的思想解決問題的能力;

      2、通過對實際問題的分析,培養關注生活,進一步體會方程是刻畫現實世界的有效數學模型,培養良好的數學應用意識。

      【重點、難點】

      重點:二元一次方程的概念及二元一次方程的解的概念。

      難點1、了解二元一次方程的解的不唯一性和相關性。即了解二元一次方程的解有無數個,

      但不是任意的兩個數是它的解。

      2、把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程。

      【教學方法與教學手段】

      1、通過創設問題情境,讓學生在尋求問題解決的過程中認識二元一次方程,了解二元一

      次方程的特點,體會到二元一次方程的引入是解決實際問題的需要。

      2、通過觀察、思考、交流等活動,激發學習情緒,營造學習氣氛,給學生一定的時間和

      空間,自主探討,了解二元一次方程的解的不唯一性和相關性。

      3、通過學練結合,以游戲的形式讓學生及時鞏固所學知識。

      【教學過程】

      一、創設情境導入新課

      1、一個數的3倍比這個數大6,這個數是多少?

      2、寫有數字5的黃卡和寫有數字2的藍卡若干張,問黃卡和藍卡各取幾張,才能使取到的卡片上的數字之和為22?

      思考:這個問題中,有幾個未知數?能列一元一次方程求解嗎?

      如果設黃卡取x張,藍卡取y張,你能列出方程嗎?

      3、在高速公路上,一輛轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米。如果設轎車的速度是a千米/時,卡車的速度是b千米/時,你能列出怎樣的方程?

      二、師生互動探索新知

      1、推陳出新發現新知

      引導學生觀察所列的方程:5x?2y?22,2a?3b?20,這兩個方程有哪些共同特征?這些特征與一元一次方程比較,哪些是相同的,哪些是不同的.?你能給它們取個名字嗎?

      (板書:二元一次方程)

      根據它們的共同特征,你認為怎樣的方程叫做二元一次方程?(二元一次方程的定義:含有兩個未知數,且含有未知數的項的次數都是一次的方程叫做二元一次方程。)

      2、小試牛刀鞏固新知

      判斷下列各式是不是二元一次方程

      (1)x2?y?0(2)12a?b?2b?0(3)y?x(4)x??123y

      3、師生互動再探新知

      (1)什么是方程的解?(使方程兩邊的值相等的未知數的值,叫做方程的解。)

      (2)你能給二元一次方程的解下一個定義嗎?(使二元一次方程兩邊的值相等的一對未

      知數的值,叫做二元一次方程的一個解。)

      ?若未知數設為x,y,記做x?,若未知數設為a,b,記做

      ?y?

      4、再試牛刀檢驗新知

      (1)檢驗下列各組數是不是方程2a?3b?20的解:(學生感悟二元一次方程解的不唯一性)

      a?4a?5a?0a?100

      b?3b??1020b??b?6033

      (2)你能寫出方程x-y=1的一個解嗎?(再一次讓學生感悟二元一次方程的解的不唯一性)

      5、自我挑戰三探新知

      有3張寫有相同數字的藍卡和2張寫有相同數字的黃卡,這五張卡片上的數字之和為10。設藍卡上的數字為x,黃卡上的數字為y,根據題意列方程。3x?2y?10

      請找出這個方程的一個解,并寫出你得到這個解的過程。

      學生在解二元一次方程的過程中體驗和了解二元一次方程解的不唯一性。

      6、動動筆頭鞏固新知

      獨立完成課本第81頁課內練習2

      三、你說我說清點收獲

      比較一元一次方程和二元一次方程的相同點和不同點

      相同點:方程兩邊都是整式

      含有未知數的項的次數都是一次

      如何求一個二元一次方程的解

      四、知識鞏固

      1、必答題

      (1)填空題:若mxy?9x?3yn?1?7是關于x,y的二元一次方程,則m?n?x?2y?5變形正確的有2

      10?xx?10①x?5?4y②x?10?4y③y?④y?44

      (3x?7是方程2x?y?15的解。()(2)多選題:方程

      y?1

      x?7

      (4)判斷題:方程2x?y?15的解是。()y?1

      2、搶答題

      是方程2x?3y?5的一個解,求a的值。(1)已知x??2

      y?a

      (2)寫出一個解為x?3的二元一次方程。

      y?1

      3、個人魅力題

      寫有數字5的黃卡和寫有數字2的藍卡若干張,問黃卡和藍卡各取幾張,才能使取到的卡片上的數字之和為22?設黃卡取x張,藍卡取y張,根據題意列方程:5x?2y?22你能完成這道題目嗎?

      五、布置作業

    初中數學教案4

      【教學目標】

      1、掌握多邊形的內角和的計算方法,并能用內角和知識解決一些簡單的問題。

      2、經歷探索多邊形內角和計算公式的過程,體會如何探索研究問題。

      3、通過將多邊形"分割"為三角形的過程體驗,初步認識"轉化"的數學思想。

      【教學重點與教學難點】

      1、重點:多邊形的內角和公式。

      2、難點:多邊形內角和的推導。

      3、關鍵:。多邊形"分割"為三角形。

      【教具準備】

      三角板、卡紙

      【教學過程】

      一、創設情景,揭示問題

      1、在一次數學基礎知識搶答賽中,老師出了這么一個問題,一個五邊形的所有角相加等于多少度?一個學生馬上能回答,你們能嗎?

      2、教具演示:將一個五邊形沿對角線剪開,能分割成幾個三角形?

      你能說出五邊形的內角和是多少度嗎?(點題)意圖:利用搶答問題和教具演示,調動學生的學習興趣和注意力

      二、探索研究學會新知

      1、回顧舊知,引出問題:

      (1)三角形的內角和等于_________。外角和等于____________

      (2)長方形的內角和等于_____,正方形的內角和等于__________。

      2、探索四邊形的內角和:

      (1)學生思考,同學討論交流。

      (2)學生敘述對四邊形內角和的認識(第一二組通過測量相加,第三四組通過畫對角線分成兩個三角形。)回顧三角形,正方形,長方形內角和,使學生對新問題進行思考與猜想。以四邊形的內角和作為探索多邊形的。突破口。

      (3)引導學生用"分割法"探索四邊形的內角和:

      方法一:連接一條對角線,分成2個三角形:

      180°+180°=360°

      從簡單的思維方式發散學生的想象力達到"分割"問題,并讓學生發現問題,解決問題教學步驟教學內容備注方法二:在四邊形內部任取一點,與頂點連接組成4個三角形。

      180°×4-360°=360°

      3、探索多邊形內角和的問題,提出階梯式的問題:

      你能嘗試用上面的方法一求出五邊形的內角和嗎?(第一二組)

      你能嘗試用上面的方法一求出六邊形的內角和嗎?(第三,四組)那么n邊形呢?完成后填表:

      n邊形3456.。.n分成三角形的`個數1234.。.n—2內角和。.。.

      4、及時運用,掌握新知:

      (1)一個八邊形的內角和是_____________度

      (2)一個多邊形的內角和是720度,這個多邊形是_____邊形

      (3)一個正五邊形的每一個內角是________,那么正六邊形的每個內角是_________

      通過學生動手去用分割法求五(六)邊形的內角和,從簡單到復雜,從而歸納出n邊形的內角和。

      三、點例透析

      運用新知例題:想一想:如果一個四邊形的一組對角互補,那么另一組對角有什么關系呢?

      四、應用訓練強化理解

      4、第83頁練習1和2多邊形內角和定理的應用

      五、知識回放

      課堂小結提問方式:本節課我們學習了什么?

      1、多邊形內角和公式。

      2、多邊形內角和計算是通過轉化為三角形。

      六、作業練習

      1、書面作業:

      2、課外練習:

    初中數學教案5

      教學目標:

      1、進一步理解函數的概念,能從簡單的實際事例中,抽象出函數關系,列出函數解析式;

      2、使學生分清常量與變量,并能確定自變量的取值范圍.

      3、會求函數值,并體會自變量與函數值間的對應關系.

      4、使學生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數的自變量的取值范圍的求法.

      5、通過函數的教學使學生體會到事物是相互聯系的是有規律地運動變化著的

      教學重點:了解函數的意義,會求自變量的取值范圍及求函數值.

      教學難點:函數概念的抽象性.

      教學過程:

      (一)引入新課:

      上一節課我們講了函數的概念:一般地,設在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有唯一的值與它對應,那么就說x是自變量,y是x的函數.

      生活中有很多實例反映了函數關系,你能舉出一個,并指出式中的自變量與函數嗎?

      1、學校計劃組織一次春游,學生每人交30元,求總金額y(元)與學生數n(個)的關系.

      2、為迎接新年,班委會計劃購買100元的小禮物送給同學,求所能購買的總數n(個)與單價(a)元的關系.

      解:1、y=30n

      y是函數,n是自變量

      2、n是函數,a是自變量.

      (二)講授新課

      剛才所舉例子中的函數,都是利用數學式子即解析式表示的這種用數學式子表示函數時,要考慮自變量的`取值必須使解析式有意義.如第一題中的學生數n必須是正整數.

      例1、求下列函數中自變量x的取值范圍.

      (1)(2)

      (3)(4)

      (5)(6)

      分析:在(1)、(2)中,x取任意實數,與都有意義.

      (3)小題的是一個分式,分式成立的條件是分母不為0.這道題的分母是,因此要求.

      同理(4)小題的也是分式,分式成立的條件是分母不為0,這道題的分母是,因此要求且.

      第(5)小題,是二次根式,二次根式成立的條件是被開方數大于、等于零.的被開方數是.

      同理,第(6)小題也是二次根式,是被開方數,

      小結:從上面的例題中可以看出函數的解析式是整數時,自變量可取全體實數;函數的解析式是分式時,自變量的取值應使分母不為零;函數的解析式是二次根式時,自變量的取值應使被開方數大于、等于零.

      注意:有些同學沒有真正理解解析式是分式時,自變量的取值應使分母不為零,片面地認為,凡是分母,只要即可.教師可將解題步驟設計得細致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使函數成立的自變量的取值范圍.二次根式的問題也與次類似.

      但象第(4)小題,有些同學會犯這樣的錯誤,將答案寫成或.在解一元二次方程時,方程的兩根用“或者”聯接,在這里就直接拿過來用.限于初中學生的接受能力,教師可聯系日常生活講清“且”與“或”.說明這里與是并且的關系.即2與-1這兩個值x都不能取.

      例2、自行車保管站在某個星期日保管的自行車共有3500輛次,其中變速車保管費是每輛一次0.5元,一般車保管費是每次一輛0.3元.

      (1)若設一般車停放的輛次數為x,總的保管費收入為y元,試寫出y關于x的函數關系式;

      (2)若估計前來停放的3500輛次自行車中,變速車的輛次不小于25%,但不大于40%,試求該保管站這個星期日收入保管費總數的范圍.

      解:(1)

      (x是正整數,

      (2)若變速車的輛次不小于25%,但不大于40%,

      則收入在1225元至1330元之間

      總結:對于反映實際問題的函數關系,應使得實際問題有意義.這樣,就要求聯系實際,具體問題具體分析.

      對于函數,當自變量時,相應的函數y的值是.60叫做這個函數當時的函數值.

      例3、求下列函數當時的函數值:

      (1)————(2)—————

      (3)————(4)——————

      注:本例既鍛煉了學生的計算能力,又創設了情境,讓學生體會對于x的每一個值,y都有唯一確定的值與之對應.以此加深對函數的理解.

      (二)小結:

      這節課,我們進一步地研究了有關函數的概念.在研究函數關系時首先要考慮自變量的取值范圍.因此,要求大家能掌握解析式含有一個自變量的簡單的整式、分式、二次根式的函數的自變量取值范圍的求法,并能求出其相應的函數值.另外,對于反映實際問題的函數關系,要具體問題具體分析.

      作業:習題13.2A組2、3、5

      今天的內容就介紹到這里了。

    初中數學教案6

      一、學生起點分析

      學生已經了勾股定理,并在先前其他內容學習中已經積累了一定百度一下的逆向思維、逆向研究的經驗,如:已知兩直線平行,有什么樣的結論?

      反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發逆向思考獲得逆命題,學生應該已經具備這樣的意識,但具體研究中

      可能要用到反證等思路,對現階段學生而言可能還具有一定困難,需要教師適時的引導。

      二、學習任務分析

      本節課是北師大版數學八年級(上)第一章《勾股定理》第2節。教學任務有:探索勾股定理的逆定理

      并利用該定理根據邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數,增加對勾股數的直觀體驗。為此確定教學目標:

      ● 知識與技能目標

      1.理解勾股定理逆定理的具體內容及勾股數的概念;

      2.能根據所給三角形三邊的條件判斷三角形是否是直角三角形。

      ● 過程與方法目標

      1.經歷一般規律的探索過程,發展學生的抽象思維能力;

      2.經歷從實驗到驗證的過程,發展學生的數學歸納能力。

      ● 情感與態度目標

      1.體驗生活中的數學的應用價值,感受數學與人類生活的密切聯系,激發學生學數學、用數學的興趣;

      2.在探索過程中體驗成功的喜悅,樹立學習的自信心。

      教學重點

      理解勾股定理逆定理的具體內容。

      三、教法學法

      1.教學方法:實驗猜想歸納論證

      本節課的教學對象是初二學生,他們的參與意識較強,思維活躍,對通過實驗獲得數學結論已有一定的體驗

      但數學思維嚴謹的同學總是心存疑慮,利用邏輯推理的方式,讓同學心服口服顯得非常迫切,為了實現本節課的教學目標,我力求從以下三個方面對學生進行引導:

      (1)從創設問題情景入手,通過知識再現,孕育教學過程;

      (2)從學生活動出發,通過以舊引新,順勢教學過程;

      (3)利用探索,研究手段,通過思維深入,領悟教學過程。

      2.課前準備

      教具:教材、電腦、多媒體課件。

      學具:教材、筆記本、課堂練習本、文具。

      四、教學過程設計

      本節課設計了七個環節。第一環節:情境引入;第二環節:合作探究;第三環節:小試牛刀;第四環節:

      登高望遠;第五環節:鞏固提高;第六環節:交流小結;第七環節:布置作業。

      第一環節:情境引入

      內容:

      情境:1.直角三角形中,三邊長度之間滿足什么樣的關系?

      2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?

      意圖:

      通過情境的創設引入新課,激發學生探究熱情。

      效果:

      從勾股定理逆向思維這一情景引入,提出問題,激發了學生的求知欲,為下一環節奠定了良好的基礎。

      第二環節:合作探究

      內容1:探究

      下面有三組數,分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:

      1.這三組數都滿足 嗎?

      2.分別以每組數為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學生分為4人活動小組,每個小組可以任選其中的一組數。

      意圖:

      通過學生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結論;在活動中體驗出數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。

      效果:

      經過學生充分討論后,匯總各小組實驗結果發現:①5,12,13滿足 ,可以構成直角三角形;②7,24,25滿足 ,可以構成直角三角形;③8,15,17滿足 ,可以構成直角三角形。

      從上面的分組實驗很容易得出如下結論:

      如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

      內容2:說理

      提問:有同學認為測量結果可能有誤差,不同意這個發現。你認為這個發現正確嗎?你能給出一個更有說服力的理由嗎?

      意圖:讓學生明確,僅僅基于測量結果得到的結論未必可靠,需要進一步通過說理等方式使學生確信結論的可靠性,同時明晰結論:

      如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

      滿足 的`三個正整數,稱為勾股數。

      注意事項:為了讓學生確認該結論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學有一個直觀的認識。

      活動3:反思總結

      提問:

      1.同學們還能找出哪些勾股數呢?

      2.今天的結論與前面學習勾股定理有哪些異同呢?

      3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?

      4.通過今天同學們合作探究,你能體驗出一個數學結論的發現要經歷哪些過程呢?

      意圖:進一步讓學生認識該定理與勾股定理之間的關系

      第三環節:小試牛刀

      內容:

      1.下列哪幾組數據能作為直角三角形的三邊長?請說明理由。

      ①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

      解答:①②

      2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )

      A 250 B 150 C 200 D 不能確定

      解答:B

      3.如圖1:在 中, 于 , ,則 是( )

      A 等腰三角形 B 銳角三角形

      C 直角三角形 D 鈍角三角形

      解答:C

      4.將直角三角形的三邊擴大相同的倍數后, (圖1)

      得到的三角形是( )

      A 直角三角形 B 銳角三角形

      C 鈍角三角形 D 不能確定

      解答:A

      意圖:

      通過練習,加強對勾股定理及勾股定理逆定理認識及應用

      效果

      每題都要求學生獨立完成(5分鐘),并指出各題分別用了哪些知識。

      第四環節:登高望遠

      內容:

      1.一個零件的形狀如圖2所示,按規定這個零件中 都應是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?

      解答:符合要求 , 又 ,

      2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經驗,船長指揮船左傳90,繼續航行70海里,則距出發地250海里,你能判斷船轉彎后,是否沿正西方向航行?

      解答:由題意畫出相應的圖形

      AB=240海里,BC=70海里,,AC=250海里;在△ABC中

      =(250+240)(250-240)

      =4900= = 即 △ABC是Rt△

      答:船轉彎后,是沿正西方向航行的。

      意圖:

      利用勾股定理逆定理解決實際問題,進一步鞏固該定理。

      效果:

      學生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形( ),以便于計算。

      第五環節:鞏固提高

      內容:

      1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。

      解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

      2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?

      圖4 圖5

      解答:④⑤是直角三角形,①②③⑥不是直角三角形

      意圖:

      第一題考查學生充分利用所學知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學生如何利用網格進行計算,從而解決問題。

      效果:

      學生在對所學知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網格的應用。

      第六環節:交流小結

      內容:

      師生相互交流總結出:

      1.今天所學內容①會利用三角形三邊數量關系 判斷一個三角形是直角三角形;②滿足 的三個正整數,稱為勾股數;

      2.從今天所學內容及所作練習中總結出的經驗與方法:①數學是源于生活又服務于生活的;②數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律;③利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形, 便于計算。

      意圖:

      鼓勵學生結合本節課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發展運用數學的信心和能力,初步形成積極參與數學活動的意識。

      效果:

      學生暢所欲言自己的切身感受與實際收獲,總結出利用三角形三邊數量關系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應用。

      第七環節:布置作業

      課本習題1.4第1,2,4題。

      五、教學反思:

      1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現的例題和練習。

      2.注重引導學生積極參與實驗活動,從中體驗任何一個數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。

      3.在利用今天所學知識解決實際問題時,引導學生善于對公式變形,便于簡便計算。

      4.注重對學習新知理解應用偏困難的學生的進一步關注。

      5.對于勾股定理的逆定理的論證可根據學生的實際情況做適當調整,不做要求。

      由于本班學生整體水平較高,因而本設計教學容量相對較大,教學中,應注意根據自己班級學生的狀況進行適當的刪減或調整。

      附:板書設計

      能得到直角三角形嗎

      情景引入 小試牛刀: 登高望遠

    初中數學教案7

      教學目標

      1、理解有理數加法的意義,掌握有理數加法法則中的符號法則和絕對值運算法則;

      2、能根據有理數加法法則熟練地進行有理數加法運算,弄清有理數加法與非負數加法的區別;

      3、三個或三個以上有理數相加時,能正確應用加法交換律和結合律簡化運算過程;

      4、通過有理數加法法則及運算律在加法運算中的運用,培養學生的運算能力;

      5、本節課通過行程問題說明有理數的加法法則的合理性,然后又通過實例說明如何運用法則和運算律,讓學生感知到數學知識來源于生活,并應用于生活。

      教學建議

      (一)重點、難點分析

      本節教學的重點是依據有理數的加法法則熟練進行有理數的加法運算。難點是有理數的加法法則的理解。

      (1)加法法則本身是一種規定,教材通過行程問題讓學生了解法則的合理性。

      (2)具體運算時,應先判別題目屬于運算法則中的哪個類型,是同號相加、異號相加、還是與0相加。

      (3)如果是同號相加,取相同的符號,并把絕對值相加。如果是異號兩數相加,應先判別絕對值的大小關系,如果絕對值相等,則和為0;如果絕對值不相等,則和的符號取絕對值較大的加數的符號,和的絕對值就是較大的絕對值與較小的絕對值的差。一個數與0相加,仍得這個數。

      (二)知識結構

      (三)教法建議

      1、對于基礎比較差的同學,在學習新課以前可以適當復習小學中算術運算以及正負數、相反數、絕對值等知識。

      2、有理數的加法法則是規定的,而教材開始部分的行程問題是為了說明加法法則的合理性。

      3、應強調加法交換律“a+b=b+a”中字母a、b的任意性。

      4、計算三個或三個以上的加法算式,應建議學生養成良好的`運算習慣。不要盲目動手,應該先仔細觀察式子的特點,深刻認識加數間的相互關系,找到合理的運算步驟,再適當運用加法交換律和結合律可以使加法運算更為簡化。

      5、可以給出一些類似“兩數之和必大于任何一個加數”的判斷題,以明確由于負數參與加法運算,一些算術加法中的正確結論在有理數加法運算中未必也成立。

      6、在探討導出有理數的加法法則的行程問題時,可以嘗試發揮多媒體教學的作用。用動畫演示人或物體在同一直線上兩次運動的過程,讓學生更好的理解有理數運算法則。

    初中數學教案8

    從不同方向看

      教學目標

      本節在介紹不等式的基礎上,介紹了不等式的解集并用數軸表示,介紹了解簡單不等式的方法,讓學生進一步體會數形結合的作用。

      知識與能力

      1.使學生掌握不等式的解集的概念,以及什么是解不等式。

      2.使學生育能夠借助數軸將不等式的解集直觀地表示出來,初步理解數形結合的思想。

      過程與方法

      1.通過回憶給學生介紹不等式的解集的概念。

      2.教會學生怎樣在數軸上表示不等式的解集。

      情感、態度與價值觀

      1.通過反復的訓練使學生認識到數軸的重要性,培養其數形結合的思想。

      2.通過觀察、歸納、類比、推斷而獲得不等式的解集與數軸上的點之間的關系,體驗數學活動充滿探索性與創造性。

      教學重、難點及教學突破

      重點

      1.認識不等式的解集的概念。

      2.將不等式的解集表示在數軸上。

      難點

      學生對不等式的解是一個集合可能會不太理解。

      教學突破

      由于受方程思想的影響,學生對不等式的`解集的接受和理解可能會有一定的困難,建議教師能結合簡單的不等式和實際問題讓學生體會不等式的解可以是一個集合,并組織學生討論舉例,加深理解。

      另外,應在本節的過程中讓學生能理解在數軸上表示不等式的解集,讓他們熟悉數形結合的思想。

      教學步驟

      一、新課導入

      1.回顧提問:同學們,我們已經學習了不等式。現在我們一起回顧一下什么是不等式,以及有關數軸的知識。

      學生用自己的語言描述不等式的定義,并基本說出數軸的三要素是:原點、正方向、單位長度。能將有理數在數軸上表示出來。

      2.創設情景:我們現在知道了不等式的解不唯一,那么我們如何將不等式的解全部表示出來呢?這就是我們這節課要解決的問題。

      二、不等式的解集

      1.講述不等式的解集的定義,引導學生觀察不等式x+2>5,并說出-3 、-2 、 3.5 、 7中哪些是不等式的解,哪些不是?-3 、-2不是不等式x+2>5的解,3.5 、 7是不等式的解。

      2.給出“解不等式”的概念,并就上述例題由不完全歸納法給出不等式x+2>5的解集是x>3 。

      3.將x>3在數軸上表示出來,并以此圖為例講述在數軸上表示基本不等式的方法:(1)在數軸上找到3;(2)向右表示比3大的點;(3)空心點表示不含有3,所以有下圖。

      讓學生自己動手畫出x ≤ 3,并找學生上臺板演。

      4.就學生在黑板上的板演,指出畫圖應注意的事項,并讓學生觀察前后兩圖的區別。

      通過對比兩圖的不同,發現區別是大于和小于導致圖上所取的方向不同,有等號和沒等號導致空心和實心的區別。

      5.給出適當的例題,鞏固本節內容。

      本課總結

      這節課主要學習了什么是不等式的解集,并教學生在數軸上表示不等式的解集,體會數形結合的思想。

      教學探討與反思

      為了提高數學課的教學效果,教師必須使課堂教學過程符合學生的認知規律,并讓學生參與到課堂教學活動中來,使他們真正成為課堂教學的主體。教師對課堂教學的設計,應著眼在為學生個性品質的優化創設最佳課堂教學環境。教師引導學生參與的是數學思維活動。

    初中數學教案9

      教學 建議

      一、知識結構

      二、重點、難點分析

      本節 教學 的重點是不等式的解集的概念及在數軸上表示不等式的解集的方法.難點為不等式的解集的概念.

      1.不等式的解與方程的解的意義的異同點

      相同點:定義方式相同(使方程成立的未知數的值,叫做方程的解);解的表示方法也相同.

      不同點:解的個數不同,一般地,一個不等式有無數多個解,而一個方程只有一個或幾個解,例如, 能使不等式 成立,那么 是不等式的一個解,類似地 等也能使不等式 成立,它們都是不等式 的解,事實上,當 取大于 的數時,不等式 都成立,所以不等式 有無數多個解.

      2.不等式的解與解集的區別與聯系

      不等式的解與不等式的解集是兩個不同的概念,不等式的解是指滿足這個不等式的未知數的某個值,而不等式的解集,是指滿足這個不等式的未知數的所有的值,不等式的所有解組成了解集,解集中包括了每一個解.

      注意:不等式的解集必須滿足兩個條件:第一,解集中的任何一個數值,都能使不等式成立;第二,解集外的任何一個數值,都不能使不等式成立.

      3.不等式解集的表示方法

      (1)用不等式表示

      一般地,一個含未知數的不等式有無數多個解,其解集是某個范圍,這個范圍可用一個最簡單的不等式表示出來,例如,不等式 的解集是 .

      (2)用數軸表示

      如不等式 的解集 ,可以用數軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圓.

      如不等式 的解集 ,可以用數軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圈.

      注意:在數軸上,右邊的點表示的數總比左邊的點表示的數大,所以在數軸上表示不等式的解集時應牢記:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.

      一、素質 教育 目標

      (一)知識 教學

      1.使學生了解不等式的解集、解不等式的概念,會在數軸上表示出不等式的解集.

      2.知道不等式的“解集”與方程“解”的不同點.

      (二)能力訓練點

      通過 教學 ,使學生能夠正確地在數軸上表示出不等式的解集,并且能把數軸上的某部分數集用相應的不等式表示.

      (三)德育滲透點

      通過講解不等式的“解集”與方程“解”的關系,向學生滲透對立統一的辯證觀點.

      (四)美育滲透點

      通過本節課的學習,讓學生了解不等式的解集可利用圖形來表達,滲透數形結合的數學美.

      二、學法引導

      1. 教學 方法:類比法、引導發現法、實踐法.

      2.學生學法:明確不等式的解與解集的區別和聯系,并能熟練地用數軸表示不等式的解集,在數軸上表示不等式的解集時,要特別注意:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.

      三、重點·難點·疑點及解決辦法

      (一)重點

      1.不等式解集的概念.

      2.利用數軸表示不等式的解集.

      (二)難點

      正確理解不等式解集的概念.

      (三)疑點

      弄不清不等式的解集與方程的解的區別、聯系.

      (四)解決辦法

      弄清楚不等式的解與解集的概念.

      四、課時安排

      一課時.

      五、教具學具準備

      投影儀或電腦、自制膠片、直尺.

      六、師生互動活動設計

      (一)明確目標

      本節課重點學習不等式的解集,解不等式的概念并會用數軸表示不等式的解集.

      (二)整體感知

      通過枚舉法來形象直觀地推出不等式的解集,再給出不等式解集的概念,從而更準確地讓學生掌握該概念.再通過師生的互動學習用數軸表示不等式的解集,從而為今后求不等式組的解集打下良好的基礎.

      (三) 教學 過程

      1.創設情境,復習引入

      (1)根據不等式的基本性質,把下列不等式化成 或 的形式.

      ①   ②

      (2)當 取下列數值時,不等式 是否成立?

      l,0,2,-2.5,-4,3.5,4,4.5,3.

      學生活動:獨立思考并說出答案:(1)① ② .(2)當 取1,0,2,-2.5,-4時,不等式 成立;當 取3.5,4,4.5,3時,不等式 不成立.

      大家知道,當 取1,2,0,-2.5,-4時,不等式 成立.同方程類似,我們就說1,2,0,-2.5,-4是不等式的解,而3.5,4,4.5,3這些使不等式 不成立的數就不是不等式 的解.

      對于不等式 ,除了上述解外,還有沒有解?解的個數是多少?將它們在數軸上表示出來,觀察它們的分布有什么規律?

      學生活動:思考討論,嘗試得出答案,指名板演如下:

      【教法說明】啟發學生用試驗方法,結合數軸直觀研究,把已說出的不等式 的`解2,0,1,-2.5,-4用“實心圓點”表示,把不是 的解的數值3.5,4,4.5,3用“空心圓圈”表示,好像是“挖去了”.

      師生歸納:觀察數軸可知,用“實心圓點”表示的數都落在3的左側,3和3右側的數都用空心圓圈表示,從而我們推斷,小于3的每一個數都是不等式 的解,而大于或等于3的任何一個數都不是 的解.可以看出,不等式 有無限多個解,這無限多個解既包括小于3的正整數、正小數、又包括0、負整數、負小數;把不等式 的無限多個解集中起來,就得到 的解的集會,簡稱不等式 的解集.

      2.探索新知,講授新課

      (1)不等式的解集

      一般地,一個含有未知數的不等式的所有的解,組成這個不等式的解的集合,簡稱這個不等式的解集.

      ①以方程 為例,說出一元一次方程的解的情況.

      ②不等式 的解的個數是多少?能一一說出嗎?

      (2)解不等式

      求不等式的解集的過程,叫做解不等式.

      解方程 求出的是方程的解,而解不等式 求出的則是不等式的解集,為什么?

      學生活動:觀察思考,指名回答.

      教師 歸納:正是因為一元一次方程只有惟一解,所以可以直接求出.例如 的解就是 ,而不等式 的解有無限多個,無法一一列舉出來,因而只能用不等式 或 揭示這些解的共同屬性,也就是求出不等式的解集.實際上,求某個不等式的解集就是運用不等式的基本性質,把原不等式變形為 或 的形式, 或 就是原不式的解集,例如 的解集是 ,同理, 的解集是 .

      【教法說明】學生對一元一次方程的解印象較深,而不等式與方程的相同點較多,因而易將“不等式的解集”與“方程的解”混為一談,這里設置上述問題,目的是使學生弄清“不等式的解集”與“方程的解”的關系.

      (3)在數軸上表示不等式的解集

      ①表示不等式 的解集:( )

      分析:因為未知數的取值小于3,而數軸上小于3的數都在3的左邊,所以就用數軸上表示3的點的左邊部分來表示解集 .注意未知數 的取值不能為3,所以在數軸上表示3的點的位置上畫空心圓圈,表示不包括3這一點,表示如下:

      ②表示 的解集:( )

      學生活動:獨立思考,指名板演并說出分析過程.

      分析:因為未知數的取值可以為-2或大于-2的數,而數軸上大于-2的數都在-2右邊,所以就用數鋼上表示-2的點和它的右邊部分來表示.如下圖所示:

      注意問題:在數軸上表示-2的點的位置上,應畫實心圓心,表示包括這一點.

      【教法說明】利用數軸表示不等式解的解集,增強了解集的直觀性,使學生形象地看到不等式的解有無限多個,這是數形結合的具體體現. 教學 時,要特別講清“實心圓點”與“空心圓圈”的不同用法,還要反復提醒學生弄清到底是“左邊部分”還是“右邊部分”,這也是學好本節內容的關鍵.

      3.嘗試反饋,鞏固知識

      (1)不等式的解集 與 有什么不同?在數軸上表示它們時怎樣區別?分別在數軸上把這兩個解集表示出來.

      (2)在數軸上表示下列不等式的解集.

      ①  ②  ③  ④

      (3)指出不等式 的解集,并在數軸上表示出來.

      師生活動:首先學生在練習本上完成,然后 教師 抽查,最后與出示投影的正確答案進行對比.

      【教法說明】 教學 時,應強調2.(4)題的正確表示為:

      我們已經能夠在數軸上準確地表示出不等式的解集,反之若給出數軸上的某部分數集,還要會寫出與之對應的不等式的解集來.

      4.變式訓練,培養能力

      (1)用不等式表示圖中所示的解集.

      【教法說明】強調“· ”“ °”在使用、表示上的區別.

      (2)單項選擇:

      ①不等式 的解集是( )

      A.   B.   C.   D.

      ②不等式 的正整數解為( )

      A.1,2  B.1,2,3  C.1  D.2

      ③用不等式表示圖中的解集,正確的是( )

      A.   B.   C.   D.

      ④用數軸表示不等式的解集 正確的是( )

      學生活動:分析思考,說出答案.( 教師 給予糾正或肯定)

      【教法說明】此題以搶答形式茁現,更能激發學生探索知識的熱情.

      (四)總結、擴展

      學生小結, 教師 完善:

      1.? 本節重點:

      (1)了解不等式的解集的概念.

      (2)會在數軸上表示不等式的解集.

      2.注意事項:

      弄清“ · ”還是“ °”,是“左邊部分”還是“右邊部分”.

      七、布置作業

    初中數學教案10

      教學建議

      一、知識結構

      二、重點難點分析

      本節教學的重點是同位角、內錯角、同旁內角的概念、難點為在較復雜的圖形中辨認同位角、內錯角、同旁內角、掌握同位角、內錯角、同旁內角的相關概念是進一步學習平行線、四邊形等后續知識的基礎、

      (1)兩條直線被第三條直線所截,構成八個角(簡稱“三線八角”),其中同位角4對,內錯角2對,同旁內角2對、

      (2)準確識別同位角、內錯角、同旁內角的關鍵,是弄清哪兩條直線被哪一條線所截、也就是說,在辨別這些角之前,要弄清哪一條直線是截線,哪兩條直線是被截線、

      (3)在截線的同旁找同位角和同旁內角,在截線的兩旁找內錯角、要結合圖形,熟記同位角、內錯角、同旁內角的位置特點,比較它們的區別與聯系、

      (4)在復雜的圖形中識別同位角、內錯角、同旁內角時,應當沿著角的邊將圖形補全,或者把多余的線暫時略去,找到三線八角的基本圖形,進而確定這兩個角的位置關系、

      三、教法建議

      1、上節課討論了兩條直線相交以后所形成的四個角,這一節課是進一步討論三條直線相交后所形成的八個角,所以在教課過程,要運用基本圖形結構將所學的知識及其內在聯系向學生展示、

      2、在講三線八角概念時,一定要細致地分析、顧名思義,把握住兩個關鍵的環節,“三條線與一條線”,盡量給出變式的.圖形,讓學生分辨清楚、

      3、這節課雖然不涉及兩條直線平行后被第三條直線所截的問題,但在可能的情況下,將平行線的圖形讓學生見到,對下一步的學習很有好處,例如,平行四形中的內錯角,學生開始接受起來有一定困難,在這一課時中,出現這個基本圖形,為以后學習打下基礎、

      教學設計示例

      一、素質教育目標

      (一)知識教學點

      1、理解同位角、內錯角、同旁內角的概念、

      2、結合圖形識別同位角、內錯角、同旁內角、

      (二)能力訓練點

      1、通過變式圖形的識圖訓練,培養學生的識圖能力、

      2、通過例題口答“為什么”,培養學生的推理能力、

      (三)德育滲透點

      從復雜圖形分解為基本圖形的過程中,滲透化繁為簡,化難為易的化歸思想;從圖形變化過程中,培養學生辯證唯物主義觀點、

      (四)美育滲透點

      通過“三線八角”基本圖形,使學生認識幾何圖形的位置美、

      二、學法引導

      1、教師教法:嘗試指導,討論評價、變式練習、回授、

      2、學生學法:主動思考,相互研討,自我歸納、

      三、重點、難點、疑點及解決辦法

      (一)生點

      同位角、內錯角、同旁內角的概念、

      (二)難點

      在較復雜的圖形中辨認同位角、內錯角、同旁內角、

      (三)疑點

      正確理解新概念、

      (四)解決辦法

      引導學生討論歸納三類角的特征,并以練習加以鞏固、

      四、課時安排

      1課時

      一、教具學具準備

      投影儀、三角板、自制膠片、

      六、師生互動活動設計

      1、通過一組練習創設情境,復習基礎知識,引入新課、

      2、通過學生閱讀書本,教師設問引導,練習鞏固講授新課、

      3、通過師生互答完成課堂小結、

      七、教學步驟

      (一)明確目標

      使學生掌握“三線八角”,并能在圖形中進行辨識、

      (二)整體感知

      以復習舊知創設情境引入課題,以指導閱讀、設計問題、小組討論學習新知,以變式練習鞏固新知、

      (三)教學過程

      創設情境,復習導入

      回答下列問題:

      1、如圖,∠1與∠3,∠2與∠4是什么角?它們的大小有什么關系?

      2、如圖,∠1與∠2,∠l與∠4是什么角?它們有什么關系?

      3、如圖,三條直線 AB 、CD 、EF 交于一點 O ,則圖中有幾對對頂角,有幾對鄰補角?

      4、如圖,三條直線 AB 、CD 、EF 兩兩相交,則圖中有幾對對項角,有幾對鄰補角?

      5、三條直線相交除上述兩種情況外,還有其他相交的情形嗎?

      學生答后,教師出示復合投影片1,在(1、2題的)圖上添加一條直線 CD ,使 CD 與EF相交于某一點(如圖),直線 AB 、CD 都與EF相交或者說兩條直線 AB 、CD 被第三條直線EF所截,這樣圖中就構成八個角,在這八個角中,有公共頂點的兩個角的關系前面已經學過,今天,我們來研究那些沒有公共頂點的兩個角的關系、

      【板書】 2.3同位角、內錯角、同旁內角

      【教法說明】通過復合投影片演示了同位角、內錯角、同旁內角的產生過程,并從演示過程中看到,這些角也是與相交線有關系的角,兩條直線被第三條直線所截,是相交線的又一種情況、認識事物間是發展變化的辯證關系、

      嘗試指導,學習新知

      1、學生自己嘗試學習,閱讀課本第67頁例題前的內容、

      2、設計以下問題,幫助學生正確理解概念、

      (1)同位角:∠4和∠8與截線及兩條被截直線在位置上有什么特點?圖中還有其他同位角嗎?

      (2)內錯角:∠3和∠5與截線及兩條被截直線在位置上有什么特點?圖中還有其他內錯角嗎?

      (3)同旁內角:∠4和∠5與截線及兩條被截直線在位置上有什么特點?圖中還有其他同分內角嗎?

      (4)同位角和同分內角在位置上有什么相同點和不同點?

      內錯角和同旁內角在位置上有什么相同點和不同點?

      (5)這三類角的共同特征是什么?

      3、對上述問題以小組為單位展開討論,然后學生間互相評議、

      4、教師對學生討論過程中所發表的意見進行評判,歸納總結、

      在截線的同旁找同位角和同旁內角,在截線的不同旁找內錯角,因此在“三線八角”的圖形中的主線是截線,抓住了截線,再利用圖形結構特征( F 、Z 、U )判斷問題就迎刃而解、

      【教法說明】讓學生自己嘗試學習,可以充分發揮學生的積極性、主動性和創造性,幾個問題的設計目的是深化教學重點,使學生看書更具有針對性,避免盲目性、學生互相評價可以增加討論的深度,教師最后評價可以統一學生的觀點,學生在議議評評的過程中明理、增智,培養了能力、

      投影顯示(投影片2)

      例題?如圖,直線DE、BC被直線AB所截,(1)∠l與∠2,∠1與∠3,∠1與∠4各是什么關系的角?

      (2)如果∠1=∠4,那么∠1和∠2相等嗎?∠1和∠3互補嗎?為什么?

      [教法說明]例題較簡單,讓學生口答,回答“為什么”只要求學生能用文字語言把主要根據說出來,講明道理即可,不必太規范,等學習證明時再嚴格訓練、

      變式訓練,鞏固新知

      投影顯示(投影片3)

      【教法說明】本題是對簡單變式圖形的訓練,以培養學生的識圖能力,第2題指明第三條直線是 c ,即 a b c 所截,如 c a 被占所截,則結果截然不同,因此遇到題目先分清哪兩條直線被哪一條直線所栽,這是解題的關鍵和前提、

      投影顯示(投影片4)

      【教法說明】本組練習是由同位角、內錯角和同旁內角找出構成它們的“三線”,或是由“三線八角”圖形判斷同位角、內錯角、同旁內角、這兩者都需要進行這樣的三個步驟,一看角的頂點;二看角的邊;三看角的方位、這“三看”又離不開主線——截線的確定,讓學生知道:無論圖形的位置怎樣變動,圖形多么復雜,都要以截線為主線(不變),去解決萬變的圖形,另外遇到較復雜的圖形,也可以從分解圖形入手,把復雜圖形化為若干個基本圖形、如第2題由已知條件結合所求部分,對各個小題分別分解圖形如下:

      投影顯示(投影片5)

      【教法說明】學生在較復雜的圖形中,對找這一類的同位角,找這一類的內錯角,找這一類的同旁內角有一定困難,為此安排本組選擇題,有利于突破難點,第2題中學生對 C 、D 兩個圖形易混淆,要加強對比以便解決教學疑點。第3題讓學生掌握三角形中的3對同旁內角。另外本組練習也為后面的練習打基礎。

      投影顯示(投影片6)

      【教法說明】本組題目是上組題的延伸,再次突破難點,提高學生思維的廣度與深度、學生解決此類題常常因考慮不全面而丟解,要使學生養成全方位多角度考慮問題的習慣,第2題以裁線為標準分類求解,分別把 AB 、BD 、EF 看成是截線找三類角,這樣既不遺漏又不重復、

      (四)總結、擴展

      1、本節研究了一條直線分別和兩條直線相交,所得八個角的位置關系,掌握辨別這些角位置關系的關鍵是分清哪條線是截線,哪些線是被截直線,在截線的同旁找同位角和同旁內角,在截線的不同旁找內錯角,只要抓住三線中的主線——截線,就能正確識別這三類角、

      2、相交直線

      3、教師指著圖中的一條被截直線,問:“這條直線繞著與截線著與截線的交點旋轉,當同位角相等時,兩條被截直線是什么關系?”

      【教法說明】將所學知識進行歸納總結,加強了知識問的聯系,充分體現了所學知識的系統性,最后用是合式小結、可使學生課后自覺地去看預習,尋找答案。系統性,最后用懸念式小結,可使學生課后自覺地去看書預習,尋找答案。

      八、布置作業

      課本第72頁B組第4題、

      【教法說明】課本練習穿插在課堂練習中完成,故只留一道提高題,讓學有余力的同學繼續探究,提高學生思維廣度

      作業答案

      4、答:(1)設 E BC 延長線上的一點,∠ A 與∠ ACD 、∠ ACE 是內錯角,它們分別是由直線 AB 、CD 被直線 AC 截成的和直線 AB 、BE 被直線 AC 截成的。

      (2)∠ B 與∠ DCE 、∠ ACE 是同位有,它們分別是由直線 AB 、CD 被直線 BE 截成的和直線 AB 、AC 被直線 BE 截成的。

    初中數學教案11

      把方程兩邊都加上(或減去)同一個數或同一個整式,就相當于把方程中的某些項改變符號后,從方程的一邊移到另一邊,這樣的變形叫做移項。

      一、教材內容分析

      本節課是數學人教版七年級上冊第三章第二節第二小節的內容。這是一節“概念加例題型”課,此種課型中的學習內容一部分是概念,一部分是運用前面的概念解決實際問題的例題。本節課主要內容是利用移項解一元一次方程。是學生學習解一元一次方程的基礎,這一部分內容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基礎。這類課一般采用“導學導教,當堂訓練”的方式進行,教師指導學生學習的重點一般不放在概念上,要特別留意學生運用概念解題或做與例題類似的習題時,對概念的理解是否到位。

      二、教學目標:

      1.知識與技能:(1)找相等關系列一元一次方程;(2)用移項解一元一次方程。(3)掌握移項變號的基本原則

      2.過程與方法:經歷運用方程解決實際問題的過程,發展抽象、概括、分析問題和解決問題的能力,認識用方程解決實際問題的關鍵是建立相等關系。

      3.情感、態度:通過具體情境引入新問題,在移項法則探究的過程中,培養學生合作意識,滲透化歸的思想。

      三、學情分析

      針對七年級學生學習熱情高,但觀察、分析、概括能力較弱的特點,本節從實際問題入手,讓學生通過自己思考、動手,激發學生的求知欲,提高學生學習的興趣與積極性。在課堂教學中,學生主要采取自學、討論、思考、合作交流的學習方式,使學生真正成為課堂的主人,逐步培養學生觀察、概括、歸納的能力。

      四、教學重點:利用移項解一元一次方程。

      五、教學難點:移項法則的探究過程。

      六、教學過程:

      (一)情景引入

      引例:請同學們思考這樣一個有趣的問題,我國民間流傳著許多趣味算題,多以順口溜的形式表達,請看這樣一個數學問題:一群老頭去趕集,半路買了一堆梨,一人一個多一個,一人兩個少兩個,老頭和梨分別是( )

      A.3個老頭,4個梨 B.4個老頭,3個梨 C.5個老頭,6個梨 D.7個老頭,8個梨

      設計意圖:大部分同學會用算術法(答案代入法)來解答的,而這類問題我們如何用方程來解答呢?激起學生求知的欲望,巧妙過渡,揭示課題。板書課題:解一元一次方程——移項

      (二)出示學習目標

      1.理解移項法,明確移項法的依據,會解形如ax+b=cx+d類型 的一元一次方程。

      2.會建立方程解決簡單的實際問題。

      設計意圖:這兩個目標的達成,也驗證了本節課學生自學的效果,這也是本節課的教學重難點。

      (三)導教導學

      1.出示自學指導

      自學教材問題2到例3的內容,思考以下問題:(1)問題2中這批書的總數有哪幾種表示法?它們之間有什么關系?本題可作為列方程的依據的等量關系是什么?(2)什么是移項?移項的.依據是什么?移項時應該注意什么問題?解形如“ax+b=cx+d”類型的方程中移項起了什么作用?自學例3后請歸納解這類一元一次方程的步驟(8分鐘后,比誰能仿照問題2和例3的格式正確解答問題)

      2.學生自學

      學生根據自學提綱進行獨立學習,教師巡視,對自學速度慢的、自學能力差的、注意力不夠集中的學生給以暗示和幫扶,有利于自學后的成果展示。

      3.交流展示(小組合作展示)

      (合作交流一)教材問題2中這批書的總數有哪幾種表示法?它們之間有什么關系?本題哪個相等關系可作為列方程的依據呢?

      問題2:把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少學生?

      1)設未知數:設這個班有X名學生,根據兩種不同分法這批書的總數就有兩種表示方法,即這批書共有(3 X+20)本或(4X-25)本。

      2)找相等關系:這批書的總數是一個定值,表示同一個量的兩個不同的式子相等。(板書)

      3)根據等量關系列方程: 3x+20 = 4x-25(板書)

      【總結提升】解決“分配問題”應用題的列方程的基本要點:

      A.找出能貫穿應用題始終的一個不變的量.

      B.用兩個不同的式子去表示這個量.

      C.由表示這個不變的量的兩個式子相等列出方程.

      設計意圖:因為在自學提綱的引領下,每個小組自主學習的效果不同,反饋的意見不同,所以在展示中首先要展示學生對課本例題的理解思路。采取主動自愿的方式,一個小組主講,其它小組補充。

      (變式訓練1)某學校組織學生共同種一批樹,如果每人種5棵,則剩下3棵;如果每人種6棵,則缺3棵樹苗,求參與種樹的人數

      (只設列即可)

      (變式訓練2)我國民間流傳著許多趣味算題,多以順口溜的形式表達,請看這樣一個數學問題:一群老頭去趕集,半路買了一堆梨,一人一個多一個,一人兩個少兩個,老頭和梨各多少?

      設計意圖:檢查提問學生對“分配問題”應用題掌握的情況,學生回答后教師板書所列方程為后面教學做好鋪墊。學生會帶著“如何解這類方程?”的好奇心過渡到下一個環節的學習。

      (合作交流二)什么是移項?移項的依據是什么?移項時應該注意什么問題?解形如“ax+b=cx+d”類型的方程中移項起了什么作用?自學例3后請歸納解這類一元一次方程的步驟。

      (板書 )把等式一邊的某項改變符號后,從等式的一邊移到另一邊,這種變形叫做移項。

      《解一元一次方程——移項》教學設計(魏玉英)

      師:為什么等式(方程)可以這樣變形?依據什么?

      (出示)依據等式的基本性質1.即:等式兩邊都加上或減去同一個數或同一個整式,所得結果仍是等式.

      師:解一元一次方程中“移項”起了什么作用?

      (出示) 通過移項,使等號左邊僅含未知數的項,等號右邊僅含常數的項,使方程更接近x=a的形式.(與課題對照滲透轉化思想)

      (基礎訓練)搶答:判斷下列移項是否正確,如有錯誤,請修改

      《解一元一次方程——移項》教學設計(魏玉英)

      設計理念:讓各個小組憑著勢力去搶答。這五個習題重點考察學生對移項的掌握是本節課的重難點,習題分層設計且成梯度分布。

      【歸納板書】 解“ax+b=cx+d”型的一元一次方程的步驟:(1) 移項,(2) 合并同類項,(3) 系數化為1

      (綜合訓練) 解下列方程(任選兩題)

      設計理念:第(2)、(3)兩題未知數系數是相同類型的,所以讓學生任選一題即可。通過綜合訓練能讓學生更進一步鞏固用移項和合并同類項去解方程了。

      (中考試練)若x=2是關于x的方程2x+3m-1=0的解,則m的值為

      設計理念:通過本題的訓練讓學生明確中考在本節的考點,同時激勵學生在數學知識的學習中要抓住知識的核心和重點。

      (四)我總結、我提高:

      通過本節課的學習我收獲了。

      設計意圖:通過小組之間互相談收獲的方式進行課堂小結,讓學生相互檢查本節課的學習效果。可以引導學生從本節課獲得的知識、解題的思想方法、學習的技巧等方面交流意見。

      (五)當堂檢測(50分)

      1.下列方程變形正確的是( )

      A.由-2x=6, 得x=3

      B.由-3=x+2, 得x=-3-2

      C.由-7x+3=x-3, 得(-7+1)x=-3-3

      D.由5x=2x+3, 得x=-1

      2.一批游客乘汽車去觀看“上海世博會”。如果每輛汽車乘48人,那么還多4人;如果每輛汽車乘50人,那么還有6個空位,求汽車和游客各有多少?(只設出未知數和列出方程即可)

      3.(20分)已知x=1是關于x的方程3m+8x=m+x的解,求m的值。

      (師生活動)學生獨立答題,教師巡回檢查,對先答完的學生進行及時批改,并把得滿分的學生作為小老師對后解答完的學生的檢測進行評定,最后老師進行小結。

      (六)實踐活動

      請每一位同學用自己的年齡編一 道“ax+b=cx+d”型的方程應用題,并解答。先在組內交流,選出組內最有創意的一個記在題卡上,自習在全班進行展示 。

      設計意圖:

      讓學生課后完成,讓學生深深體會到數學來源于生活而又服務于生活,體現了數學知識與實際相結合。

    初中數學教案12

      一、教材的地位與作用

      《二元一次方程》是九年義務教育人教版教材七年級下冊第四章《二元一次方程組》的第一節。在此之前學生已經學習了一元一次方程,這為本節的學習起了鋪墊的作用。本節內容是二元一次方程的起始部分,因此,在本章的教學中,起著承上啟下的地位。

      二、教學目標

      (一)知識與技能:

      1.了解二元一次方程概念;

      2.了解二元一次方程的解的概念和解的不唯一性;

      3.會將一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式。

      (二)數學思考:

      體會學習二元一次方程的必要性,學會獨立思考,體會數學的轉化思想和主元思想。

      (三)問題解決:

      初步學會利用二元一次方程來解決實際問題,感受二元一次方程解的不唯一性。獲得求二元一次方程解的思路方法。

      (四)情感態度:

      培養學生發現意識和能力,使其具有強烈的好奇心和求知欲。

      三、教學重點與難點

      教學重點:二元一次方程及其解的概念。

      教學難點:二元一次方程的概念里“含未知數的項的次數”的理解;把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式。

      四、教法與學法分析

      教法:情境教學法、比較教學法、閱讀教學法。

      學法:閱讀、比較、探究的學習方式。

      五、教學過程

      1.創設情境,引入新課

      從學生熟悉的姚明受傷事件引入。

      師:火箭隊最近取得了20連勝,姚明參加了前面的12場比賽,是球隊的頂梁柱。

      (1)連勝的第12場,火箭對公牛,在這場比賽中,姚明得了12分,其中罰球得了2分,你知道姚明投中了幾個兩分球?(本場比賽姚明沒投中三分球)師:能用方程解決嗎?列出來的方程是什么方程?

      (2)連勝的第1場,火箭對勇士,在這場比賽中,姚明得了36分,你知道姚明投中了幾個兩分球,罰進了幾個球嗎?(罰進1球得1分,本場比賽姚明沒投中三分球)師:這個問題能用一元一次方程解決嗎?,你能列出方程嗎?

      設姚明投進了x個兩分球,罰進了y個球,可列出方程。

      (3)在雄鹿隊與火箭隊的比賽中易建聯全場總共得了19分,其中罰球得了3分。你知道他分別投進幾個兩分球、幾個三分球嗎?

      設易建聯投進了x個兩分球,y個三分球,可列出方程。

      師:對于所列出來的三個方程,后面兩個你覺的是一元一次方程嗎?那這兩個方程有什么相同點嗎?你能給它們命一個名稱嗎?

      從而揭示課題。

      (設計意圖:第一個問題主要是讓學生體會一元一次方程是解決實際問題的數學模型,從而回顧一元一次方程的概念;第二、三問題設置的主要目的是讓學生體會到當實際問題不能用一元一次方程來解決的時候,我們可以試著列出二元一次方程,滲透方程模型的通用性。另外,數學來源于生活,又應用于生活,通過創設輕松的問題情境,點燃學習新知識的“導火索”,引起學生的學習興趣,以“我要學”的主人翁姿態投入學習,而且“會學”“樂學”。)

      2.探索交流,汲取新知

      概念思辨,歸納二元一次方程的特征

      師:那到底什么叫二元一次方程?(學生思考后回答)

      師:翻開書本,請同學們把這個概念劃起來,想一想,你覺得和我們自己歸納出來的概念有什么區別嗎?(同學們思考后回答)

      師:根據概念,你覺得二元一次方程應具備哪幾個特征?

      活動:你自己構造一個二元一次方程。

      快速判斷:下列式子中哪些是二元一次方程?

      ①x2+y=0②y=2x+

      4③2x+1=2x ④ab+b=4

      (設計意圖:這一環節是本課設計的重點,為加深學生對“含有未知數的項的次數”的內涵的理解,我采取的是閱讀書本中二元一次方程的概念,形成學生的認知沖突,激發學生對“項的次數”的思考,進而完善學生對二元一次方程概念的理解,通過學生自己舉例子的活動去把“項的次數”形象化。)

      二元一次方程解的概念

      師:前面列的兩個方程2x+y=36,2x+3y=16真的是二元一次方程嗎?通過方程2x+3y=16,你知道易建聯可能投中幾個兩分球,幾個三分球嗎?

      師:你是怎么考慮的?(讓學生說說他是如何得到x和y的值的,怎么證明自己的這對未知數的取值是對的)利用一個學生合理的解釋,引導學生類比一元一次方程的解的概念,讓學生歸納出二元一次方程的解的概念及其記法。(學生看書本上的記法)

      使二元一次方程兩邊的值相等的一對未知數的值,叫做二元一次方程的一個解。(設計意圖:通過引導學生自主取值,猜x和y的值,從而更深刻的體會二元一次方程解的本質:使方程左右兩邊相等的一對未知數的`取值。引導學生看書本,目的是讓學生在記法上體會“一對未知數的取值”的真正含義。)

      二元一次方程解的不唯一性

      對于2x+3y=16,你覺得這個方程還有其它的解嗎?你能試著寫幾個嗎?師:這些解你們是如何算出來的?

      (設計意圖:設計此環節,目的有三個:首先,是讓學生學會如何檢驗一對未知數的取值是二元一次方程的解;其次是讓學生體會到二元一次方程的解的不唯一性;最后讓學生感受如何得到一個正確的解:只要取定一個未知數的取值,就可以代入方程算出另一個未知數的值,這也就是求二元一次方程的解的方法。)如何去求二元一次方程的解

      例:已知方程3x+2y=10,

      (1)當x=2時,求所對應的y的值;

      (2)取一個你自己喜歡的數作為x的值,求所對應的y的值;

      (3)用含x的代數式表示y;

      (4)用含y的代數式表示x;

      (5)當x=負2,0時,所對應的y的值是多少?

      (6)寫出方程3x+2y=10的三個解.

      (設計意圖:此處設計主要是想讓學生形成求二元一次方程的解的一般方法,先讓學生展示他們的思維過程,再從他們解一元一次方程的重復步驟中提煉出用一個未知數的代數式表示另一個未知數,然后把它與原方程比較,把一個未知數的值代入哪一個方程計算會更簡單,形成“正遷移”,引導學生體會“用關于一個未知數的代數式表示另一個未知數”的過程,實質是解一個關于y的一元一次方程,滲透數學的主元思想。以此突破本節課的難點。)

      大顯身手:

      課內練習第2題

      梳理知識,課堂升華

      本節課你有收獲嗎?能和大家說說你的感想嗎?3.作業布置

      必做題:書本作業題1、2、3、4。

      選做題:書本作業題5、6。

      設計說明

      本節授課內容屬于概念課教學。數學學科的內容有其固有的組成規律和邏輯結構,它總是由一些最基本的數學概念作為核心和邏輯起點,形成系統的數學知識,所以數學概念是數學課程的核心。只有真正理解數學概念,才能理解數學。二元一次方程作為初中階段接觸的第二類方程,形成概念并不難,關鍵如何理解它的概念,因此本節課采用先讓同學自己試著下定義,然后與教材中的完整定義相互比較,發現不同點,進而理解“含有未知數的項的次數都是一次”這句話的內涵。在二元一次方程的解的教學過程中,采用的是讓學生體會“一個解、不止一個解、無數個解”的漸進過程,感受到用一個二元一次方程并不能求出一對確定的未知數的取值,從而讓學生產生有后續學習的愿望。

      在講授用含一個未知數的代數式表示另一個未知數的時候,采用“特殊、一般、特殊”的教學流程,以期突破難點。首先拋出問題“這幾個解你是如何求的”,

      此時注意的聚焦點是二元一次方程;其次學生歸納先定一個未知數的取值,代入原方程求另一個未知數的值,此時注意的聚焦點是一元一次方程;然后教師引導回到二元一次方程,假如x是一個常數,那么這個方程可以看成是一個關于誰的一元一次方程,此時注意的聚焦點是原來的二元一次方程;最后代入求值,此時注意的聚焦點是等號右邊的那個算式,體會“用含一個未知數的代數式表示另一個未知數”在求值過程中的簡潔性,強化這種代數形式。另外,在引導學生推導“用含一個未知數的代數式表示另一個未知數”的過程中,滲透數學的主元思想和轉化思想。

    初中數學教案13

      教學目標

      1.知識與技能

      能運用運算律探究去括號法則,并且利用去括號法則將整式化簡.

      2.過程與方法

      經歷類比帶有括號的有理數的運算,發現去括號時的符號變化的規律,歸納出去括號法則,培養學生觀察、分析、歸納能力.

      3.情感態度與價值觀

      培養學生主動探究、合作交流的意識,嚴謹治學的學習態度.

      重、難點與關鍵

      1.重點:去括號法則,準確應用法則將整式化簡.

      2.難點:括號前面是“-”號去括號時,括號內各項變號容易產生錯誤.

      3.關鍵:準確理解去括號法則.

      教具準備

      投影儀.

      教學過程

      一、新授

      利用合并同類項可以把一個多項式化簡,在實際問題中,往往列出的式子含有括號,那么該怎樣化簡呢?

      現在我們來看本章引言中的問題(3):

      在格爾木到拉薩路段,如果列車通過凍土地段要t小時,那么它通過非凍土地段的時間為(t-0.5)小時,于是,凍土地段的路程為100t千米,非凍土地段的路程為120(t-0.5)千米,因此,這段鐵路全長為

      100t+120(t-0.5)千米①

      凍土地段與非凍土地段相差

      100t-120(t-0.5)千米②

      上面的式子①、②都帶有括號,它們應如何化簡?

      思路點撥:教師引導,啟發學生類比數的運算,利用分配律.學生練習、交流后,教師歸納:

      利用分配律,可以去括號,合并同類項,得:

      100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60

      100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60

      我們知道,化簡帶有括號的整式,首先應先去括號.

      上面兩式去括號部分變形分別為:

      +120(t-0.5)=+120t-60③

      -120(t-0.5)=-120+60④

      比較③、④兩式,你能發現去括號時符號變化的規律嗎?

      思路點撥:鼓勵學生通過觀察,試用自己的語言敘述去括號法則,然后教師板書(或用屏幕)展示:

      如果括號外的.因數是正數,去括號后原括號內各項的符號與原來的符號相同;

      如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反.

      特別地,+(x-3)與-(x-3)可以分別看作1與-1分別乘(x-3).

      利用分配律,可以將式子中的括號去掉,得:

      +(x-3)=x-3(括號沒了,括號內的每一項都沒有變號)

      -(x-3)=-x+3(括號沒了,括號內的每一項都改變了符號)

      去括號規律要準確理解,去括號應對括號的每一項的符號都予考慮,做到要變都變;要不變,則誰也不變;另外,括號內原有幾項去掉括號后仍有幾項.

      二、范例學習

      例1.化簡下列各式:

      (1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

      思路點撥:講解時,先讓學生判定是哪種類型的去括號,去括號后,要不要變號,括號內的每一項原來是什么符號?去括號時,要同時去掉括號前的符號.為了防止錯誤,題(2)中-3(a2-2b),先把3乘到括號內,然后再去括號.

      解答過程按課本,可由學生口述,教師板書.

      例2.兩船從同一港口同時出發反向而行,甲船順水,乙船逆水,兩船在靜水中的速度都是50千米/時,水流速度是a千米/時.

      (1)2小時后兩船相距多遠?

      (2)2小時后甲船比乙船多航行多少千米?

      教師操作投影儀,展示例2,學生思考、小組交流,尋求解答思路.

      思路點撥:根據船順水航行的速度=船在靜水中的速度+水流速度,船逆水航行速度=船在靜水中行駛速度-水流速度.因此,甲船速度為(50+a)千米/時,乙船速度為(50-a)千米/時,2小時后,甲船行程為2(50+a)千米,乙船行程為(50-a)千米.兩船從同一洪口同時出發反向而行,所以兩船相距等于甲、乙兩船行程之和.

      解答過程按課本.

      去括號時強調:括號內每一項都要乘以2,括號前是負因數時,去掉括號后,括號內每一項都要變號.為了防止出錯,可以先用分配律將數字2與括號內的各項相乘,然后再去括號,熟練后,再省去這一步,直接去括號.

      三、鞏固練習

      1.課本第68頁練習1、2題.

      2.計算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]

      思路點撥:一般地,先去小括號,再去中括號.

      四、課堂小結

      去括號是代數式變形中的一種常用方法,去括號時,特別是括號前面是“-”號時,括號連同括號前面的“-”號去掉,括號里的各項都改變符號.去括號規律可以簡單記為“-”變“+”不變,要變全都變.當括號前帶有數字因數時,這個數字要乘以括號內的每一項,切勿漏乘某些項.

      五、作業布置

      1.課本第71頁習題2.2第2、3、5、8題.

      2.選用課時作業設計.

    初中數學教案14

      初中數學分層教學的理論與實踐

      天山六中裴煥民

      一、分層教學的含義

      分層教學是指教師在學生知識基礎、智力因素存在明顯差異的情況下,有區別地設計教學環節進行教學,遵循因材施教的原則,有針對性地實施對不同類別學生的學習指導,不僅根據學生的不同選擇不同的教法、布置作業,還因材施“助”、因材施“改”、因材施“教”,使每個學生都能在原有的基礎上得以發展,從而達到不同類別的教學目標的一種教學方法。

      分層教學是“著眼于與學生的可持續性的、良性的發展”的教育觀念下的一種教學實施策略。所謂分層教學(同班、同年級分層次教學)就是教師在教授同一教學內容時,對同一個班內不同知識水平和接受能力的優、中、差生以相應的三個層次的教學深度和廣度進行合講分練,做到課堂教學有的放矢,區別對待,使每個學生都在自己原來的基礎上學有所得,思有所進,在不同程度上有所提高,同步發展。教師的教學方法應從最低點起步,分類指導,逐步推進,做到“分合”有序,動靜結合,并分層設計練習,分層設計課堂,分層布置作業,引導學生全員參與,各得進步。

      二、分層教學必要性分析

      1、教學現狀呼喚分層教學的實施

      義務教育的實施使小學畢業生全部升入初中學習,這樣,在同一班里,學生的知識、能力參差不齊。但是,應試教育留下的種種弊端抑制了各層次的學生的學習積極性和興趣,整齊劃一的教學要求,忽視了學生之間的差異。為了使教育面向全體學生,減輕部分學生過重的負擔,使他們在原有的基礎上有所提高,全面提高教學質量,又要使有特長的學生得到更進一步的發展。因此必須實施因材施教,根據不同的學生的具體情況,確立不同的教學目標,采取不同的教學方法,使其個性得到充分發展,為社會培養各種層次的有用之人。

      2、新課程改革呼喚分層教學的實施

      數學課程改革的核心是課程的實施,而教學是課程實施的基本途徑。課程改革歸根到底是要轉變教師的傳統教學觀念:包括教學方式的轉變——從“教”到

      “引”;知識技能掌握理念的轉變——從“滿堂灌”、“書山題海”到“在親身經歷中體會、理解、掌握知識技能”,強調自我的情感體驗;教材觀的轉變——從“教教材”到“用教材”,教材變成我們引導學生探究知識的工具之一;評價機制的轉變——從“唯分數論”到“適合學生自身特點的發展”,這是實施分層教學的原動力,但也是現今新課程改革的一個難點。

      在新課改中實施分層教學法的目的是逐步樹立學困生學習的信心,激發中等生的學習潛力,擴大優生的學習面。為了適應當前素質教育的需要,我們要采用針對性的矯正和幫助,進行分層教學,分類指導,及時反饋,從中探索出一條教學改革的新路子。

      3、學生個體差異的客觀存在

      心理學的研究結果表明:學生的學習能力差異是存在的,特別是學生在數學學習能力方面存在著較大的差異這已是一個不爭的事實。造成差異的原因有很多,學生的先天遺傳因素及環境、教育條件都有所不同,還有社會因素(即環境、教育條件、科學訓練),這些原因是對學生學習能力的形成起著決定性作用,所以學生所表現出的數學能力有明顯差異也是正常的。

      學生作為一個群體,存在著個體差異

      (1)智力差異。每個學生因為遺傳基因的不同,智力的差異是不可避免的。有的人聰明;有的人愚鈍,有的人形象思維強;有的邏輯思維強;有的人記憶力超人,但推理能力較差;有的人記憶力較差,卻推理能力過人。

      (2)學習基礎差異。不同的學生在小學的數學狀況不一樣:有的學生數學十分優秀,有的學生數學學習基本還沒入門,兩極分化相當嚴重。

      (3)學習品質差異。有的學生學習數學十分認真,有一套自己的數學學習方法,學得輕松愉快;而有的學生因為沒有入門,數學學得十分艱難,部分學生甚至對數學學習喪失了信心。

      4、分層次教學符合因材施教的原則

      目前我國大部分省市的數學教學采用的是統一教材、統一課時、統一教參,在學生學習能力存在差異的情況下,在教學過程中往往容易產全“顧中間、丟兩頭”。如不因材施教,就使部分學生就成了陪讀、陪考。數學能力強的學生潛能得不到充分發揮,能力稍差的學生就可能變成了后進生。有研究結果表明:教師、

      家庭、社會、學生、學校等方面的因素都有可能是形成后進生的原因,其中有50%的原因是來自教師在教學中的失誤。我們的基礎教育既要注意確保學生的共性需求,又要顧及學生的.個性發展,所以進行分層教育確有必要。

      5、分層次教學能夠有效推動教學過程的展開

      按照教育家達尼洛夫關于教學過程的動力理論之說,認為只有學生學習的可能性與對他們的要求是一致的,才可能推動教學過程的展開,從而加快學習成績的提高,而這兩者的統一關系若被破壞,就會造成學業的不良后果。學生的學習可能是由他們生理和心理的一般發展水平與對某項學習的具體準備狀態所決定的,學生學習可能性的構成因素中既有相對穩定的因素,又有易變的因素。相對穩定的因素,決定了學生在一段時間內可能達到的學習水平的范圍,決定了學業不良學生要取得學業進步只能是一個漸進的過程;易變的因素,使學生能在:一定的主客觀條件下提高或降低自己的實際可能性水平,從而促進或阻礙學習可能性與教學要求之間矛盾的轉化,加快學習成績提高或降低的速度。由此可見,分層次教學是著眼于協調教學要求與學生學習可能性的關系的一種極好的手段,使它們之間能相適應,從而推動教學過程的展開。

      三、分層教學研究的目的意義

      捷克教育家夸美紐斯在十七世紀提出來的班級授課制以其大大提高教學效率、加強學校工作的計劃性和實際社會效益風行了三百多年后,其固有的不利于學生創造能力的培養和因材施教等種種弊端與社會發展對教育的要求的矛盾越來越尖銳起來。隨著科學技術的發展,社會日益進步,教育資源和教育需求的增長和變化,班級授課制在我國做出輝煌的貢獻后逐步顯現出其先天的嚴重不足。教師在班級授課制下對能力強的學生“吃不飽”,能力欠佳的學生“吃不消”普遍感到力不從心。分層教學在這種情況下應運而生,成為優化單一班級授課制的有利途徑。

      1.有利于所有學生的提高:分層教學法的實施,避免了部分學生在課堂上完成作業后無所事事,同時,所有學生都體驗到學有所成,增強了學習信心。

      2.有利于課堂效率的提高:首先,教師事先針對各層學生設計了不同的教學目標與練習,使得處于不同層的學生都能“摘到桃子”,獲得成功的喜悅,這極大地優化了教師與學生的關系,從而提高師生合作、交流的效率;其次,教師在

      備課時事先估計了在各層中可能出現的問題,并做了充分的準備,使得實際施教更有的放矢、目標明確、針對性強,增大了課堂教學的容量。總之,通過這一教學法,有利于提高課堂教學的質量和效率。

      3.有利于教師全面能力的提升:通過有效地組織好對各層學生的教學,靈活地安排不同的層次策略,極大地鍛煉了教師的組織調控與隨機應變能力。分層教學本身引出的思考和學生在分層教學中提出來的挑戰都有利于教師能力的全面提升。

      四、分層教學的理論基礎

      1、掌握學習理論

      布魯姆提出的“掌握學習理論”主張:“給學生足夠的學習時間,同時使他們獲得科學的學習方法,通過他們自己的努力,應該都可以掌握學習內容”。“不同學生需要用不同的方法去教,不同學生對不同的教學內容能持久地集中注意力”。為了實現這個目標,就應該采取分層教學的方法。

      2、教學最優化理論

      巴班斯基的“教學最優化理論”的核心是:教學過程的最優化是選擇一種能使教師和學生在花費最少的必要時間和精力的情況下獲得最好的教學效果的教學方案并加以實施。分層教學是實現這一目標的有效方式之一。

      3、新課標的基本理念

      《數學課程標準》提出了一種全新的數學課程理念:“人人學有價值的數學;人人都能獲得必需的數學;不同的人在數學上得到不同的發展”。面向全體學生,體現了義務教育的基礎性、普及性和發展性。不僅為數學教學內容的設定指出方向,而且考慮到學生的可持續發展對數學的需求,并為學生學習數學可能產生的差異性留有充分的余地。

      五、分層教學實施的指導思想及原則

      首先,分層次教學的主體是班級教學為主,按層次教學為輔,層次分得好壞直接影響到“分層次教學”的成功與否。其指導思想是變傳統的應試教育為素質教育,是成績差異的分層,而不是人格的分層。為了不給差生增加心理負擔,必須做好分層前的思想工作,了解學生的心理特點,講情道理:學習成績的差異是客觀存在的,分層次教學的目的不是人為地制造等級,而是采用不同的方法幫助

      他們提高學習成績,讓不同成績的學生最大限度地發揮他們的潛力,以逐步縮小差距,達到班級整體優化。

      在對學生進行分層要堅持尊重學生,師生磋商,動態分層的原則。應該向學生宣布分層方案的設計,講清分層的目的和意義,以統一師生認識;指導每位學生實事求是地估計自己,通過學生自我評估,完全由學生自己自愿選擇適應自己的層次;最后,教師根據學生自愿選擇的情況進行合理性分析,若有必要,在征得學生同意的基礎上作個別調整之后,公布分層結果。這樣使部分學生既分到了合適的層次上,又保留了“臉面”,自尊心也不至于受到傷害,也提高了學生學習數學的興趣。

      其次,在分層教學中應注意下列原則的使用:

      ①水平相近原則:在分層時應將學習狀況相近的學生歸為“同一層”;

      ②差別模糊原則:分層是動態的、可變的,有進步的可以“升級”,退步的應“轉級”,且分層結果不予公布;

      ③感受成功原則:在制定各層次教學目標、方法、練習、作業時,應使學生跳一跳,才可摘到蘋果為宜,在分層中感受到成功的喜悅;

      ④零整分合原則:教學內容的合與分,對學生的“放”與“扶”,以及課外的分層輔導都應遵守這個原則;

      ⑤調節控制原則:由于各層次學生要求不一,因此在課堂上以學、議為主,教師要善于激趣、指導、精講、引思,調節并控制止好各層次學生的學習,做好分類指導;

      ⑥積極激勵原則:對各層次學生的評價,以縱向性為主。教師通過觀察、反饋信息,及時表揚激勵,對進步大的學生及時調到高一層次,相對落后的同意轉層。從而促進各層學生學習的積極性,使所有學生隨時都處于最佳的學習狀態。

      六、實施分層教學的策略與措施

      (一)分層建組

      把學生分層編組是實施分層教學、分類指導的基礎。學生的分類應遵循“多維性原則、自愿性原則和動態性原則”,教師通過對全班學生平時的數學學習的智能,技能、心理、成績、在校表現、家庭環境等,并對所獲得的數據資料進行綜合分析,分類歸檔。在此基礎上,將學生分成好、中、差層次的學習小組,讓

    初中數學教案15

      教學目標:

      1、知識與技能:(1)通過學生熟悉的問題情景,以過探索有理數減法法則得出的過程,理解有理數減法法則的合理性。

      (2)能熟練進行有理數的減法法則。

      2、過程與方法

      通過實例,歸納出有理數的減法法則,培養學生的邏輯思維能力和運算能力,通過減法到加法的轉化,讓學生初步體會人歸的數學思想。

      重點、難點

      1、重點:有理數減法法則及其應用。

      2、難點:有理數減法法則的應用符號的改變。

      教學過程:

      一、創設情景,導入新課

      1、有理數加法運算是怎樣做的?(-5)+3= —3+(—5)=

      —3+(+5)=

      2、-(-2)= -[-(+23)]=,+[-(-2)]=

      3、20xx的某天,北京市的最高氣溫是-20C,最低氣溫是-100C,這天北京市的溫差是多少?

      導語:可見,有理數的減法運算在現實生活中也有著很廣泛的應用。(出示課題)

      二、合作交流,解讀探究

      1(-2)-(-10)=8=(-2)+8

      2:珠穆朗瑪峰海拔高度為8848米,與吐魯番盆地海拔高度為-155米,珠穆朗瑪峰比吐魯番盆地高多少米?

      3、通過以上列式,你能發現減法運算與加法運算的關系嗎?

      (學生分組討論,大膽發言,總結有理數的減法法則)

      減去一個數等于加上這個數的相反數

      教師提問、啟發:(1)法則中的“減去一個數”,這個數指的`是哪個數?“減去”兩字怎樣理解?(2)法則中的“加上這個數的相反數”“加上”兩字怎樣理解?“這個數的相反數”又怎樣理解?(3)你能用字母表示有理數減法法則嗎?

      三、應用遷移,鞏固提高

      1、P.24例1 計算:

      (1) 0-(-3.18)(2)(-10)-(-6)(3)-

      解:(1)0-(-3.18)=0+3.18=3.18

      (2)(-10)-(-6)=(-10)+6=-4

      (3)-=+=1

      2、課內練習:P.241、2、3

      3、游戲:兩人一組,用撲克牌做有理數減法運算游戲(每人27張牌,黑牌點數為正數,紅牌點數為負數,王牌點數為0。每人每次出一張牌,兩人輪流先出(先出者為被減數),先求出這兩張牌點數之差者獲勝,直至其中一人手中無牌為止)。

      四、總結反思

      (1) 有理數減法法則:減去一個數,等于加上這個數的相反數。

      (2) 有理數減法的步驟:先變為加法,再改變減數的符號,最后按有理數加法法則計算。

      五、作業

      P.27習題1.4A組1、2、5、6

      備選題

      填空:比2小-9的數是 。

      а比а+2小 。

      若а小于0,е是非負數,則2а-3е 0。

    【初中數學教案】相關文章:

    初中數學教案09-14

    初中數學教案12-23

    初中數學教案實數01-13

    人教版初中數學教案12-24

    人教版初中數學教案大全03-22

    初中數學教案15篇02-04

    初中數學教案(15篇)08-28

    初中優秀數學教案:正數與負數01-30

    初中趣味數學教案(通用18篇)11-20

    <address id="ousso"></address>
    <form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
    1. 日日做夜狠狠爱欧美黑人