<address id="ousso"></address>
<form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
  1. 教案

    七年級數學下冊教案優秀

    時間:2024-12-25 23:06:39 教案 我要投稿

    七年級數學下冊教案優秀

      作為一名專為他人授業解惑的人民教師,時常需要用到教案,借助教案可以有效提升自己的教學能力。那么應當如何寫教案呢?以下是小編幫大家整理的七年級數學下冊教案優秀,歡迎大家借鑒與參考,希望對大家有所幫助。

    七年級數學下冊教案優秀

    七年級數學下冊教案優秀1

      一、學習目標

      1.使學生了解運用公式法分解因式的意義;

      2.使學生掌握用平方差公式分解因式

      二、重點難點

      重點:掌握運用平方差公式分解因式。

      難點:將單項式化為平方形式,再用平方差公式分解因式。

      學習方法:歸納、概括、總結。

      三、合作學習

      創設問題情境,引入新課

      在前兩學時中我們學習了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學習了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。

      如果一個多項式的各項,不具備相同的'因式,是否就不能分解因式了呢?當然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關系找到新的因式分解的方法,本學時我們就來學習另外的一種因式分解的方法——公式法。

      1.請看乘法公式

      左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是左邊是一個多項式,右邊是整式的乘積。大家判斷一下,第二個式子從左邊到右邊是否是因式分解?

      利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。

      a2—b2=(a+b)(a—b)

      2.公式講解

      如x2—16

      =(x)2—42

      =(x+4)(x—4)。

      9m2—4n2

      =(3m)2—(2n)2

      =(3m+2n)(3m—2n)。

      四、精講精練

      例1、把下列各式分解因式:

      (1)25—16x2;(2)9a2—b2。

      例2、把下列各式分解因式:

      (1)9(m+n)2—(m—n)2;(2)2x3—8x。

      補充例題:判斷下列分解因式是否正確。

      (1)(a+b)2—c2=a2+2ab+b2—c2。

      (2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

      五、課堂練習

      教科書練習。

      六、作業

      1、教科書習題。

      2、分解因式:x4—16x3—4x4x2—(y—z)2。

      3、若x2—y2=30,x—y=—5求x+y。

    七年級數學下冊教案優秀2

      【學習目標】

      1、經歷探索具體情境中兩個變量之間關系的過程,獲得探索變量之間關系的體驗,進一步發展符號感。

      2、在具體情境中理解什么是變量、自變量、因變量,并能舉出反映變量之間關系的例子。

      3、能從表格中獲得變量之間關系的信息,能用表格表示變量之間的關系,并根據表格中的資料嘗試對變化趨勢進行初步的預測。

      【學習方法】

      自主探究與小組合作交流相結合。

      【學習重難點】

      重點:能從表格的數據中分清什么是變量,自變量、因變量以及因變量隨自變量的變化情況。

      難點:對表格所表達的兩個變量關系的理解。

      【學習過程】

      模塊一預習反饋

      一、學習準備

      1、我們生活在一個變化的世界中,很多東西都在悄悄地發生變化。

      你能從生活中舉出一些發生變化的例子嗎?

      教材精讀

      1、請同學們觀察思考,逐一回答下面的問題:

      根據上表回答下列問題:

      (1)支撐物高度為70厘米時,小車下滑時間是多少?

      (2)如果用h表示支撐物高度,t表示小車下滑時間,隨著h逐漸變大,t的`變化趨勢是什么?

      (3)h每增加10厘米,t的變化情況相同嗎?

      (4)估計當h=110厘米時,t的值是多少,你是怎樣估計的?

      (5)隨著支撐物高度h的變化,還有哪些量發生變化?哪些量始終不發生變化?

      在小車下滑的過程中:

      支撐物的高度h和小車下滑的時間t都在變化,它們都是。其中小車下滑的時間t隨支撐物的高度h的變化而變化。支撐物的高度h是,小車下滑的時間t是。

      在這一變化過程中,小車下滑的距離(木板的長度)一直變化。像這種在變化過程中的量叫做。

      我國從1949年到1999年的人口統計數據如下(精確到0.01億):

      (1)如果用x表示時間,y表示我國人口總數,那么隨著x的變化,y的變化趨勢是什么?

      (2)X和y哪個是自變量?哪個是因變量?

      (3)從1949年起,時間每向后推移10年,我國人口是怎樣的變化?

      (4)你能根據此表格預測20xx年時我國人口將會是多少?

      在人口統計數據中:

      時間和人口數都在變化,它們都是。其中人口數隨時間的變化而變化。時間是,人口數是。

      歸納:借助表格,我們可以表示因變量隨自變量的變化而變化的情況

      模塊二合作探究

      1、研究表明,當每公頃鉀肥和磷肥的施用量一定時,土豆的產量與氮肥的施用量有如下關系:

      (1)上表反映了哪兩個變量之間的關系?哪個是自變量?哪個是因變量?

      (2)當氮肥的施用量是101千克/公頃時,土豆的產量是多少?如果不施氮肥呢?

      (3)據表格中的數據,你認為氮肥的施用量是多少時比較適宜?說說你的理由。

      (4)粗略說一說氮肥的施用量對土豆產量的影響。

      模塊三形成提升

      某電影院地面的一部分是扇形,座位按下列方式設置:

      (1)上表反映了哪兩個變量之間的關系?哪個是自變量?哪個是因變量?

      (2)第5排、第6排各有多少個座位?

      (3)第n排有多少個座位?請說明你的理由。

      模塊四小結反思

      一、本課知識

      1、變量、自變量、因變量:在某一變化過程中不斷變化的量,叫做如果一個變量y隨另一個變量x的變化而變化,則把x叫做,y叫做。即先發生變化的量叫做,后發生變化或者隨自變量的變化而變化的量叫做。

      2、常量:略

      二、我的困惑

    【七年級數學下冊教案優秀】相關文章:

    人教版七年級數學下冊教案優秀07-22

    七年級數學下冊教案范文01-03

    七年級下冊的數學教學計劃優秀07-20

    九年級下冊數學優秀教案07-04

    七年級數學下冊教案(通用20篇)03-28

    七年級數學下冊教學計劃優秀07-27

    七年級數學下冊的教學計劃優秀03-21

    五年級數學下冊教案優秀07-15

    高二下冊數學優秀教案08-14

    <address id="ousso"></address>
    <form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
    1. 日日做夜狠狠爱欧美黑人