<address id="ousso"></address>
<form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
  1. 教案

    整數指數冪的八年級數學教案

    時間:2025-04-16 06:55:49 教案 我要投稿
    • 相關推薦

    整數指數冪的人教版八年級數學教案

      教學目標:

    整數指數冪的人教版八年級數學教案

      1.知道負整數指數冪=(a≠0,n是正整數).

      2.掌握整數指數冪的運算性質.

      3.會用科學計數法表示小于1的數.

      教學重點:

      掌握整數指數冪的運算性質.

      難點:

      會用科學計數法表示小于1的數.

      情感態度與價值觀:

      通過學習課堂知識使學生懂得任何事物之間是相互聯系的,理論來源于實踐,服務于實踐.能利用事物之間的類比性解決問題.

      教學過程:

      一、課堂引入

      1.回憶正整數指數冪的運算性質: (1)同底數的冪的乘法:am?an = am+n (m,n是正整數); (2)冪的乘方:(am)n = amn (m,n是正整數); (3)積的乘方:(ab)n = anbn (n是正整數); (4)同底數的冪的除法:am÷an = am?n ( a≠0,m,n是正整數,m>n); (5)商的乘方:()n = (n是正整數);

      2.回憶0指數冪的規定,即當a≠0時,a0 = 1.

      3.你還記得1納米=10?9米,即1納米=米嗎?

      4.計算當a≠0時,a3÷a5 ===,另一方面,如果把正整數指數冪的運算性質am÷an = am?n (a≠0,m,n是正整數,m>n)中的m>n這個條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0).

      二、總結: 一般地,數學中規定: 當n是正整數時,=(a≠0)(注意:適用于m、n可以是全體整數) 教師啟發學生由特殊情形入手,來看這條性質是否成立. 事實上,隨著指數的取值范圍由正整數推廣到全體整數,前面提到的運算性質都可推廣到整數指數冪;am?an = am+n (m,n是整數)這條性質也是成立的.

      三、科學記數法: 我們已經知道,一些較大的數適合用科學記數法表示,有了負整數指數冪后,小于1的正數也可以用科學記數法來表示,例如:0.000012 = 1.2×10?5. 即小于1的正數可以用科學記數法表示為a×10?n的形式,其中a是整數位數只有1位的正數,n是正整數. 啟發學生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此發現其中的規律,從而有0.0000000012 = 1.2×10?9,即對于一個小于1的正數,如果小數點后到第一個非0數字前有8個0,用科學記數法表示這個數時,10的指數是?9,如果有m個0,則10的指數應該是?m?1.

    【整數指數冪的八年級數學教案】相關文章:

    指數與指數冪的運算教案設計08-19

    指數與指數冪的運算練習題10-21

    數學教案之分數乘整數10-06

    指數概念的擴充數學教案09-24

    冪的運算同底數冪的乘法教案10-19

    數學教案《同底數冪的乘法》(通用10篇)06-21

    數學教案:整數和小數四則混合運算06-12

    同底數冪的乘法的教案11-04

    同底數冪的乘法教案08-30

    <address id="ousso"></address>
    <form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
    1. 日日做夜狠狠爱欧美黑人