<address id="ousso"></address>
<form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
  1. 八年級數學教案最新

    時間:2025-10-16 00:25:00 教案 我要投稿

    八年級數學教案最新

      作為一名人民教師,常常要寫一份優秀的教案,教案是教學活動的依據,有著重要的地位。優秀的教案都具備一些什么特點呢?下面是小編精心整理的八年級數學教案最新,僅供參考,歡迎大家閱讀。

    八年級數學教案最新

    八年級數學教案最新1

      一、學習目標:

      1、經歷探索平方差公式的過程。

      2、會推導平方差公式,并能運用公式進行簡單的'運算。

      二、重點難點

      重點:平方差公式的推導和應用;

      難點:理解平方差公式的結構特征,靈活應用平方差公式。

      三、合作學習

      你能用簡便方法計算下列各題嗎?

      (1)20xx×1999(2)998×1002

      導入新課:計算下列多項式的積、

      (1)(x+1)(x—1);

      (2)(m+2)(m—2)

      (3)(2x+1)(2x—1);

      (4)(x+5y)(x—5y)。

      結論:兩個數的和與這兩個數的差的積,等于這兩個數的平方差。

      即:(a+b)(a—b)=a2—b2

      四、精講精練

      例1:運用平方差公式計算:

      (1)(3x+2)(3x—2);

      (2)(b+2a)(2a—b);

      (3)(—x+2y)(—x—2y)。

      例2:計算:

      (1)102×98;

      (2)(y+2)(y—2)—(y—1)(y+5)。

      隨堂練習

      計算:

      (1)(a+b)(—b+a);

      (2)(—a—b)(a—b);

      (3)(3a+2b)(3a—2b);

      (4)(a5—b2)(a5+b2);

      (5)(a+2b+2c)(a+2b—2c);

      (6)(a—b)(a+b)(a2+b2)。

      五、小結

      (a+b)(a—b)=a2—b2

    八年級數學教案最新2

      分析:由二次根式的定義,被開方數必須是非負數,把問題轉化為解不等式。

      解:(1)∵a、b為任意實數時,都有a2+b2≥0,∴當a、b為任意實數時,是二次根式。

      (2)—3x≥0,x≤0,即x≤0時,是二次根式。

      (3),且x≠0,∴x>0,當x>0時,是二次根式。

      (4),即,故x—2≥0且x—2≠0,∴x>

      2。當x

      >2時,是二次根式。

      例4下列各式是二次根式,求式子中的字母所滿足的條件:

      分析:這個例題根據二次根式定義,讓學生分析式子中字母應滿足的`條件,進一步鞏固二次根式的定義。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數都大于等于零。

      解:(1)由2a+3≥0,得。

      (2)由,得3a—1>0,解得。

      (3)由于x取任何實數時都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數。

      (4)由—b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。

    八年級數學教案最新3

      教學目標:

      1、經歷用數格子的辦法探索勾股定理的過程,進一步發展學生的合情推力意識,主動探究的習慣,進一步體會數學與現實生活的緊密聯系。

      2、探索并理解直角三角形的三邊之間的數量關系,進一步發展學生的說理和簡單的推理的意識及能力。

      重點難點:

      重點:了解勾股定理的由來,并能用它來解決一些簡單的問題。

      難點:勾股定理的發現

      教學過程

      一、創設問題的情境,激發學生的學習熱情,導入課題

      出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻,并結合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數學家)在勾股定理方面的貢獻。

      出示投影2(書中的P2圖1—2)并回答:

      1、觀察圖

      1—2,正方形A中有_______個小方格,即A的.面積為______個單位。

      正方形B中有_______個小方格,即A的面積為______個單位。

      正方形C中有_______個小方格,即A的面積為______個單位。

      2、你是怎樣得出上面的結果的?在學生交流回答的基礎上教師直接發問:

      3、圖

      1—2中,A,B,C之間的面積之間有什么關系?

      學生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A。B,C的關系呢?

      二、做一做

      出示投影3(書中P3圖1—4)提問:

      1、圖

      1—3中,A,B,C之間有什么關系?

      2、圖

      1—4中,A,B,C之間有什么關系?

      3、從圖

      1—1,1—2,1—3,1|—4中你發現什么?

      學生討論、交流形成共識后,教師總結:

      以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。

      三、議一議

      1、圖

      1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?

      2、你能發現直角三角形三邊長度之間的關系嗎?

      在同學的交流基礎上,老師板書:

      直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”

      也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c

      那么

      我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。

      3、分別以

      5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學生測量后回答斜邊長為13)請大家想一想(2)中的規律,對這個三角形仍然成立嗎?(回答是肯定的:成立)

      四、想一想

      這里的29英寸(74厘米)的電視機,指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?

      五、鞏固練習

      1、錯例辨析:

      △ABC的兩邊為3和4,求第三邊

      解:由于三角形的兩邊為3、4

      所以它的第三邊的c應滿足=25

      即:c=5

      辨析:(1)要用勾股定理解題,首先應具備直角三角形這個必不可少的條件,可本題

      △ ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據。

      (2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊

      綜上所述這個題目條件不足,第三邊無法求得。

      2、練習P

      7 §1.1 1

      六、作業

      課本P7 §1.1 2、3、4

    【八年級數學教案最新】相關文章:

    最新大班數學教案11-28

    八年級數學教案12-23

    幼兒園中班數學教案最新12-03

    八年級數學教案(15篇)11-21

    八年級數學教案15篇10-22

    最新八年級自我陳述報告08-29

    八年級數學教案初中八年級數學上冊教案12-03

    華東師大版八年級下冊數學教案12-15

    最新八年級班主任評語11-13

    • 相關推薦
    <address id="ousso"></address>
    <form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
    1. 日日做夜狠狠爱欧美黑人