<address id="ousso"></address>
<form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
  1. 二次根式教案

    時間:2025-10-12 16:10:50 教案 我要投稿

    二次根式教案范文集錦8篇

      在教學工作者開展教學活動前,有必要進行細致的教案準備工作,教案有助于順利而有效地開展教學活動。來參考自己需要的教案吧!下面是小編為大家收集的二次根式教案8篇,歡迎閱讀,希望大家能夠喜歡。

    二次根式教案范文集錦8篇

    二次根式教案 篇1

      一、教學目標

      1.理解分母有理化與除法的關系.

      2.掌握二次根式的分母有理化.

      3.通過二次根式的分母有理化,培養學生的運算能力.

      4.通過學習分母有理化與除法的.關系,向學生滲透轉化的數學思想

      二、教學設計

      小結、歸納、提高

      三、重點、難點解決辦法

      1.教學重點:分母有理化.

      2.教學難點:分母有理化的技巧.

      四、課時安排

      1課時

      五、教具學具準備

      投影儀、膠片、多媒體

      六、師生互動活動設計

      復習小結,歸納整理,應用提高,以學生活動為主

      七、教學過程

      【復習提問】

      二次根式混合運算的步驟、運算順序、互為有理化因式.

      例1 說出下列算式的運算步驟和順序:

      (1) (先乘除,后加減).

      (2) (有括號,先去括號;不宜先進行括號內的運算).

      (3)辨別有理化因式:

      有理化因式: 與 , 與 , 與 …

      不是有理化因式: 與 , 與 …

      化簡一個式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據分式的基本性質).

      例如:等式子的化簡,如果分母是兩個二次根式的和,應該怎樣化簡?

      引入新課題.

      【引入新課】

      化簡式子 ,乘以什么樣的式子,分母中的根式符號可去掉,結論是分子與分母要同乘以 的有理化因式,而這個式子就是 ,從而可將式子化簡.

      例2 把下列各式的分母有理化:

      (1) ; (2) ; (3)

      解:略.

      注:通過例題的講解,使學生理解和掌握化簡的步驟、關鍵問題、化簡的依據.式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.

    二次根式教案 篇2

      一、內容和內容解析

      1.內容

      二次根式的性質。

      2.內容解析

      本節教材是在學生學習二次根式概念的基礎上,結合二次根式的概念和算術平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質.

      對于二次根式的性質,教材沒有直接從算術平方根的意義得到,而是考慮學生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學生學生根據算術平方根的意義,就具體數字進行分析得出結果,再分析這些結果的共同特征,由特殊到一般地歸納出結論.基于以上分析,確定本節課的教學重點為:理解二次根式的性質.

      二、目標和目標解析

      1.教學目標

      (1)經歷探索二次根式的性質的過程,并理解其意義;

      (2)會運用二次根式的性質進行二次根式的化簡;

      (3)了解代數式的概念.

      2.目標解析

      (1)學生能根據具體數字分析和算術平方根的意義,由特殊到一般地歸納出二次根式的性質,會用符號表述這一性質;

      (2)學生能靈活運用二次根式的性質進行二次根式的化簡;

      (3)學生能從已學過的各種式子中,體會其共同特點,得出代數式的概念.

      三、教學問題診斷分析

      二次根式的性質是二次根式化簡和運算的重要基礎.學生根據二次根式的概念和算術平方根的意義,由特殊到一般地得出二次根式的性質后,重在能靈活運用二次根式的性質進行二次根式的化簡和解決一些綜合性較強的問題.由于學生初次學習二次根式的性質,對二次根式性質的靈活運用存在一定的困難,突破這一難點需要教師精心設計好每一道習題,讓學生在練習中進一步掌握二次根式的性質,培養其靈活運用的能力.

      本節課的教學難點為:二次根式性質的靈活運用.

      四、教學過程設計

      1.探究性質1

      問題1 你能解釋下列式子的含義嗎?

      師生活動:教師引導學生說出每一個式子的含義.

      【設計意圖】讓學生初步感知,這些式子都表示一個非負數的算術平方根的平方.

      問題2 根據算術平方根的意義填空,并說出得到結論的依據.

      師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結論的依據.

      【設計意圖】學生通過計算或根據算術平方根的意義得出結論,為歸納二次根式的性質1作鋪墊.

      問題3 從以上的結論中你能發現什么規律?你能用一個式子表示這個規律嗎?

      師生活動:引導學生歸納得出二次根式的性質: ( ≥0).

      【設計意圖】讓學生經歷從特殊到一般的過程,概括出二次根式的性質1,培養學生抽象概括的能力.

      例2 計算

      (1) ;(2) .

      師生活動:學生獨立完成,集體訂正.

      【設計意圖】鞏固二次根式的性質1,學會靈活運用.

      2.探究性質2

      問題4 你能解釋下列式子的含義嗎?

      師生活動:教師引導學生說出每一個式子的含義.

      【設計意圖】讓學生初步感知,這些式子都表示一個數的平方的算術平方根.

      問題5 根據算術平方根的意義填空,并說出得到結論的依據.

      師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結論的依據.

      【設計意圖】學生通過計算或根據算術平方根的意義得出結論,為歸納二次根式的性質2作鋪墊.

      問題6 從以上的結論中你能發現什么規律?你能用一個式子表示這個規律嗎?

      師生活動:引導學生歸納得出二次根式的性質: ( ≥0)

      【設計意圖】讓學生經歷從特殊到一般的過程,概括出二次根式的性質2,培養學生抽象概括的'能力.

      例3 計算

      (1) ;(2) .

      師生活動:學生獨立完成,集體訂正.

      【設計意圖】鞏固二次根式的性質2,學會靈活運用.

      3.歸納代數式的概念

      問題7 回顧我們學過的式子,如, ( ≥0),這些式子有哪些共同特征?

      師生活動:學生概括式子的共同特征,得出代數式的概念.

      【設計意圖】學生通過觀察式子的共同特征,形成代數式的概念,培養學生的概括能力.

      4.綜合運用

      (1)算一算:

      【設計意圖】設計有一定綜合性的題目,考查學生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結果的符號.

      (2)想一想: 中, 的取值范圍是什么?當 ≥0時, 等于多少?當 時, 又等于多少?

      【設計意圖】通過此問題的設計,加深學生對 的理解,開闊學生的視野,訓練學生的思維.

      (3)談一談你對 與 的認識.

      【設計意圖】加深學生對二次根式性質的理解.

      5.總結反思

      (1)你知道了二次根式的哪些性質?

      (2)運用二次根式性質進行化簡需要注意什么?

      (3)請談談發現二次根式性質的思考過程?

      (4)想一想,到現在為止,你學習了哪幾類字母表示數得到的式子?說說你對代數式的認識.

      6.布置作業:教科書習題16.1第2,4題.

      五、目標檢測設計

      1. ; ; .

      【設計意圖】考查對二次根式性質的理解.

      2.下列運算正確的是( )

      A. B. C. D.

      【設計意圖】考查學生運用二次根式的性質進行化簡的能力.

      3.若 ,則 的取值范圍是 .

      【設計意圖】考查學生對一個數非負數的算術平方根的理解.

      4.計算: .

      【設計意圖】考查二次根式性質的靈活運用.

    二次根式教案 篇3

      一、內容和內容解析

      1.內容

      二次根式的概念.

      2.內容解析

      本節課是在學生學習了平方根、算術平方根、立方根的概念,會用根號表示數的平方根、立方根,知道開方與乘方互為逆運算的基礎上,來學習二次根式的概念. 它不僅是對前面所學知識的綜合應用,也為后面學習二次根式的性質和四則運算打基礎.

      教材先設置了三個實際問題,這些問題的結果都可以表示成二次根式的形式,它們都表示一些正數的算術平方根,由此引出二次根式的定義. 再通過例1討論了二次根式中被開方數字母的取值范圍的問題,加深學生對二次根式的定義的理解.

      本節課的教學重點是:了解二次根式的概念;

      二、目標和目標解析

      1.教學目標

      (1)體會研究二次根式是實際的需要.

      (2)了解二次根式的概念.

      2. 教學目標解析

      (1)學生能用二次根式表示實際問題中的數量和數量關系,體會研究二次根式的必要性.

      (2)學生能根據算術平方根的意義了解二次根式的概念,知道被開方數必須是非負數的理由,知道二次根式本身是一個非負數,會求二次根式中被開方數字母的取值范圍.

      三、教學問題診斷分析

      對于二次根式的定義,應側重讓學生理解 “ 的雙重非負性,”即被開方數 ≥0是非負數, 的'算術平方根 ≥0也是非負數.教學時注意引導學生回憶在實數一章所學習的有關平方根的意義和特征,幫助學生理解這一要求,從而讓學生得出二次根式成立的條件,并運用被開方數是非負數這一條件進行二次根式有意義的判斷.

      本節課的教學難點為:理解二次根式的雙重非負性.

      四、教學過程設計

      1.創設情境,提出問題

      問題1你能用帶有根號的的式子填空嗎?

      (1)面積為3 的正方形的邊長為_______,面積為S 的正方形的邊長為_______.

      (2)一個長方形圍欄,長是寬的2 倍,面積為130?,則它的寬為______.

      (3)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:)滿足關系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.

      師生活動:學生獨立完成上述問題,用算術平方根表示結果,教師進行適當引導和評價.

      【設計意圖】讓學生在填空過程中初步感知二次根式與實際生活的緊密聯系,體會研究二次根式的必要性.

      問題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?

      師生活動:教師引導學生說出各式的意義,概括它們的共同特征:都表示一個非負數(包括字母或式子表示的非負數)的算術平方根.

      【設計意圖】為概括二次根式的概念作鋪墊.

      2.抽象概括,形成概念

      問題3 你能用一個式子表示一個非負數的算術平方根嗎?

      師生活動:學生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號.

      【設計意圖】讓學生體會由特殊到一般的過程,培養學生的概括能力.

      追問:在二次根式的概念中,為什么要強調“a≥0”?

      師生活動:教師引導學生討論,知道二次根式被開方數必須是非負數的理由.

      【設計意圖】進一步加深學生對二次根式被開方數必須是非負數的理解.

      3.辨析概念,應用鞏固

      例1 當 時怎樣的實數時, 在實數范圍內有意義?

      師生活動:引導學生從概念出發進行思考,鞏固學生對二次根式的被開方數為非負數的理解.

      例2 當 是怎樣的實數時, 在實數范圍內有意義? 呢?

      師生活動:先讓學生獨立思考,再追問.

      【設計意圖】在辨析中,加深學生對二次根式被開方數為非負數的理解.

      問題4 你能比較 與0的大小嗎?

      師生活動:通過分 和 這兩種情況的討論,比較 與0的大小,引導學生得出 ≥0的結論,強化學生對二次根式本身為非負數的理解,

      【設計意圖】通過這一活動的設計,提高學生對所學知識的遷移能力和應用意識;培養學生分類討論和歸納概括的能力.

      4.綜合運用,鞏固提高

      練習1 完成教科書第3頁的練習.

      練習2 當x 是什么實數時,下列各式有意義.

      (1) ;(2) ;(3) ;(4) .

      【設計意圖】 辨析二次根式的概念,確定二次根式有意義的條件.

      【設計意圖】設計有一定綜合性的題目,考查學生的靈活運用的能力,開闊學生的視野,訓練學生的思維.

      5.總結反思

      教師和學生一起回顧本節課所學主要內容,并請學生回答以下問題.

      (1)本節課你學到了哪一類新的式子?

      (2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

      (3)二次根式與算術平方根有什么關系?

      師生活動:教師引導,學生小結.

      【設計意圖】:學生共同總結,互相取長補短,再一次突出本節課的學習重點,掌握解題方法.

      6.布置作業:

      教科書習題16.1第1,3,5, 7,10題.

      五、目標檢測設計

      1. 下列各式中,一定是二次根式的是( )

      A. B. C. D.

      【設計意圖】考查對二次根式概念的了解,要特別注意被開方數為非負數.

      2. 當 時,二次根式 無意義.

      【設計意圖】考查二次根式無意義的條件,即被開方數小于0,要注意審題.

      3.當 時,二次根式 有最小值,其最小值是 .

      【設計意圖】本題主要考查二次根式被開方數是非負數的靈活運用.

      4.對于 ,小紅根據被開方數是非負數,得 出的取值范圍是 ≥ .小慧認為還應考慮分母不為0的情況.你認為小慧的想法正確嗎?試求出 的取值范圍.

      【設計意圖】考查二次根式的被開方數為非負數和一個式子的分母不能為0,解題時需要綜合考慮.

    二次根式教案 篇4

      一、復習引入

      學生活動:請同學們完成下列各題:

      1.計算

      (1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

      二、探索新知

      如果把上面的x、y、z改寫成二次根式呢?以上的運算規律是否仍成立呢?仍成立.

      整式運算中的x、y、z是一種字母,它的意義十分廣泛,可以代表所有一切,當然也可以代表二次根式,所以,整式中的`運算規律也適用于二次根式.

      例1.計算:

      (1)(+)×(2)(4-3)÷2分析:剛才已經分析,二次根式仍然滿足整式的運算規律,所以直接可用整式的運算規律.

      解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.計算

      (1)(+6)(3-)(2)(+)(-)

      分析:剛才已經分析,二次根式的多項式乘以多項式運算在乘法公式運算中仍然成立.

      解:(1)(+6)(3-)

      =3-()2+18-6=13-3(2)(+)(-)=()2-()2

      =10-7=3

      三、鞏固練習

      課本P20練習1、2.

      四、應用拓展

      例3.已知=2-,其中a、b是實數,且a+b≠0,

      化簡+,并求值.

      分析:由于(+)(-)=1,因此對代數式的化簡,可先將分母有理化,再通過解含有字母系數的一元一次方程得到x的值,代入化簡得結果即可?

    二次根式教案 篇5

      1.請同學們回憶(≥0,b≥0)是如何得到的?

      2.學生觀察下面的例子,并計算:

      由學生總結上面兩個式的關系得:

      類似地,請每個同學再舉一個例子,然后由這些特殊的例子,得出:

      (≥0,b0)

      使學生回憶起二次根式乘法的運算方法的推導過程.

      類似地,請每個同學再舉一個例子,

      請學生們思考為什么b的取值范圍變小了?

      與學生一起寫清解題過程,提醒他們被開方式一定要開盡.

      對比二次根式的乘法推導出除法的運算方法

      增強學生的自信心,并從一開始就使他們參與到推導過程中來.

      對學生進一步強化被開方數的取值范圍,以及分母不能為零.

      強化學生的解題格式一定要標準.

      教學過程設計

      問題與情境師生行為設計意圖

      活動二自我檢測

      活動三挑戰逆向思維

      把反過來,就得到

      (≥0,b0)

      利用它就可以進行二次根式的化簡.

      例2化簡:

      (1)

      (2)(b≥0).

      解:(1)(2)練習2化簡:

      (1)(2)活動四談談你的收獲

      1.商的算術平方根的性質(注意公式成立的條件).

      2.會利用商的算術平方根的`性質進行簡單的二次根式的化簡.

      找四名學生上黑板板演,其余學生在練習本上計算,然后再找學生指出不足.

      二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?

      找學生口述解題過程,教師將過程寫在黑板上.

      請學生仿照例題自己解決這兩道小題,組長檢查本組的學習情況.

      請學生自己談收獲,并總結本節課的主要內容.

      為了更快地發現學生的錯誤之處,以便糾正.

      此處進行簡單處理是因為有二次根式的乘法公式的逆用作基礎理解并不難.

      讓學困生在自己做題時有一個參照.

      充分發揮組長的作用,盡可能在課堂上將問題解決.

    二次根式教案 篇6

      教學目的

      1.使學生掌握最簡二次根式的定義,并會應用此定義判斷一個根式是否為最簡二次根式;

      2.會運用積和商的算術平方根的性質,把一個二次根式化為最簡二次根式。

      教學重點

      最簡二次根式的定義。

      教學難點

      一個二次根式化成最簡二次根式的方法。

      教學過程

      一、復習引入

      1.把下列各根式化簡,并說出化簡的'根據:

      2.引導學生觀察考慮:

      化簡前后的根式,被開方數有什么不同?

      化簡前的被開方數有分數,分式;化簡后的被開方數都是整數或整式,且被開方數中開得盡方的因數或因式,被移到根號外。

      3.啟發學生回答:

      二次根式,請同學們考慮一下被開方數符合什么條件的二次根式叫做最簡二次根式?

      二、講解新課

      1.總結學生回答的內容后,給出最簡二次根式定義:

      滿足下列兩個條件的二次根式叫做最簡二次根式:

      (1)被開方數的因數是整數,因式是整式;

      (2)被開方數中不含能開得盡的因數或因式。

      最簡二次根式定義中第(1)條說明被開方數不含有分母;分母是1的例外。第(2)條說明被開方數中每個因式的指數小于2;特別注意被開方數應化為因式連乘積的形式。

      2.練習:

      下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

      3.例題:

      例1 把下列各式化成最簡二次根式:

      例2 把下列各式化成最簡二次根式:

      4.總結

      把二次根式化成最簡二次根式的根據是什么?應用了什么方法?

      當被開方數為整數或整式時,把被開方數進行因數或因式分解,根據積的算術平方根的性質,把開得盡方的因數或因式用它的算術平方根代替移到根號外面去。

      當被開方數是分數或分式時,根據分式的基本性質和商的算術平方根的性質化去分母。

      此方法是先根據分式的基本性質把被開方數的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

      三、鞏固練習

      1.把下列各式化成最簡二次根式:

      2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

    二次根式教案 篇7

      【教學目標】

      1.運用法則

      進行二次根式的乘除運算;

      2.會用公式

      化簡二次根式。

      【教學重點】

      運用

      進行化簡或計算

      【教學難點】

      經歷二次根式的乘除法則的探究過程

      【教學過程】

      一、情境創設:

      1.復習舊知:什么是二次根式?已學過二次根式的哪些性質?

      2.計算:

      二、探索活動:

      1.學生計算;

      2.觀察上式及其運算結果,看看其中有什么規律?

      3.概括:

      得出:二次根式相乘,實際上就是把被開方數相乘,而根號不變。

      將上面的公式逆向運用可得:

      積的算術平方根,等于積中各因式的算術平方根的積。

      三、例題講解:

      1.計算:

      2.化簡:

      小結:如何化簡二次根式?

      1.(關鍵)將被開方數因式分解或因數分解,使之出現“完全平方數”或“完全平方式”;

      2.P62結果中,被開方數應不含能開得盡方的.因數或因式。

      四、課堂練習:

      (一).P62 練習1、2

      其中2中(5)

      注意:

      不是積的形式,要因數分解為36×16=242.

      (二).P67 3 計算 (2)(4)

      補充練習:

      1.(x>0,y>0)

      2.拓展與提高:

      化簡:1).(a>0,b>0)

      2).(y

      2.若,求m的取值范圍。

      ☆3.已知:,求的值。

      五、本課小結與作業:

      小結:二次根式的乘法法則

      作業:

      1).課課練P9-10

      2).補充習題

    二次根式教案 篇8

      教學目的:

      1、在二次根式的混合運算中,使學生掌握應用有理化分母的方法化簡和計算二次根式;

      2、會求二次根式的代數的值;

      3、進一步提高學生的綜合運算能力。

      教學重點:在二次根式的混合運算中,靈活選擇有理化分母的方法化簡二次根式

      教學難點:正確進行二次根式的混合運算和求含有二次根式的代數式的.值

      教學過程:

      一、二次根式的混合運算

      例1 計算:

      分析:(1)題是二次根式的加減運算,可先把前三個二次根式化最簡二次根式,把第四式的分母有理化,然后再進行二次根式的加減運算。

      (2)題是含乘方、加、減和除法的混合運算,應按運算的順序進行計算,先算括號內的式子,最后進行除法運算。注意的計算。

      練習1:P206 / 8--① P207 / 1①②

      例2 計算

      問:計算思路是什么?

      答:先把第一人的括號內的式子通分,把第二個括號內的式子的分母有理化,再進行計算。

      二、求代數式的值。 注意兩點:

      (1)如果已知條件為含二次根式的式子,先把它化簡;

      (2)如果代數式是含二次根式的式子,應先把代數式化簡,再求值。

      例3 已知,求的值。

      分析:多項式可轉化為用與表示的式子,因此可根據已知條件中的及的值。求得與的值。在計算中,先把及的式了有理化分母。可使計算簡便。

      例4 已知,求的值。

      觀察代數式的特點,請說出求這個代數式的值的思路。

      答:所求的代數式中,相減的兩個式子的分母都含有二次根式,為化去它們的分母中的根號,可以分別先把各自的分母有理化或進行]通分,把這個代數式化簡后,再求值。

      三、小結

      1、對于二次根式的混合混合運算。應根據二次根式的加、減、乘除和乘方運算的順序進行,即先進行乘方運算,再進行乘、除運算,最后進行加、減運算。如果有括號,先進行括號內的式子的運算,運算結果要化為最簡二次根式。

      2、在代數式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應先把它們化簡,然后再求值。

      3、在進行二次根式的混合運算時,要根據題目特點,靈活選擇解題方法,目的在于使計算更簡捷。

      四、作業

      P206 / 7 P206 / 8---②③

    【二次根式教案】相關文章:

    二次根式教案09-12

    二次根式教案10-11

    【熱門】二次根式教案三篇09-30

    二次根式教案模板7篇11-12

    有關二次根式教案三篇08-14

    關于二次根式教案3篇08-28

    【精華】二次根式教案三篇12-18

    《二次根式》教學教案(精選10篇)08-16

    二次根式教案(通用10篇)10-25

    二次根式教案范文合集10篇12-14

    <address id="ousso"></address>
    <form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
    1. 日日做夜狠狠爱欧美黑人