關于演講比賽作文錦集八篇
作為一名辛苦耕耘的教育工作者,時常需要用到說課稿,借助說課稿可以更好地組織教學活動。那么寫說課稿需要注意哪些問題呢?以下是小編為大家收集的高中數學說課稿9篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

高中數學說課稿 篇1
一、教材分析:
1、教材的地位與作用。
本節內容是在學生學習了“事件的可能性的基礎上來學習如何預測不確定事件(隨機事件)發生的可能性的大小。”用概率預測隨機發生的可能性大小,在日常生活、自然、科技領域有著廣泛的應用,學習本單元知識,無論是今后繼續深造(高中學習概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學生較難理解。
在教材的處理上,采取小單元教學,本節課安排讓學生了解求隨機事件概率的兩種方法,目的是讓學生能夠比較系統地理解概率的意義及求概率的方法,為下面學習求比較復雜的情況的概率打下基礎。
2、重點與難點。
重點:對概率意義的理解,通過多次重復實驗,用頻率預測概率的方法,以及用列舉法求概率的方法。
難點:對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發生的總數及總的結果數的分析。
二、目的分析:
知識與技能:掌握用頻率預測概率和用列舉法求概率方法。
過程與方法:組織學生自主探究,合作交流,引導學生觀察試驗和統計的結果,進而進行分析、歸納、總結,了解并感受概率的定義的過程,引導學生從數學的視角觀察客觀世界,用數學的思維思考客觀世界,以數學的語言描述客觀世界。
情感態度價值觀:學生經歷觀察、分析、歸納、確認等數學活動,感受數學活動充滿了探索性與創造性,感受量變與質變的對立統一規律,同時為概率的精準、新穎、獨特的思維方法所震撼,激發學生學習數學的熱情,增強對數學價值觀的認識。
三、教法、學法分析:
引導學生自主探究、合作交流、觀察分析、歸納總結,讓學生經歷知識(概率定義計算公式)的.產生和發展過程,讓學生在數學活動中學習數學、掌握數學,并能應用數學解決現實生活中的實際問題,教師是學生學習的組織者、合作者和指導者,精心設計教學情境,有序組織學生活動,讓課堂充滿生機活力,體現“教” 為“學”服務這一宗旨。
四、教學過程分析:
1、引導學生探究
精心設計問題一,學生通過對問題一的探究,一方面復習前面學過的“確定事件和不確定事件”的知識,為學好本節內容理清知識障礙,二是讓學生明確為什么要學習概率(如何預測隨機事件可能性發生大小)。引導學生對問題二的探究與觀察實驗數據,使學生了解概率這一重要概念的實際背景,感受并相信隨機事件的發生中存在著統計規律性,感受數學規律的真實的發現過程。
2、歸納概括
學生從試驗中得到的統計數字及概率呈現穩定在某一數值附近這一規律,讓學生明確概率定義的由來。
引導學生重新對問題一和問題二的探究,分析某事件發生的各種可能性在全部可能發生結果中所占比例,得到用列舉法求概率的公式,引導學生進行理性思維,邏輯分析,既培養學生的分析問題能力,又讓學生明確用列舉法求概率這一簡便快捷方法的合理性。
P(A)= = = (m
3、舉例應用
⑴引導學生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學生掌握用列舉法求概率的方法。
⑵引導學生對練習中的問題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。
深化發展
⑴設置3個小題目,引導學生歸納、分析、總結,加深對知識與方法的理解,并學會靈活運用。
⑵讓學生設計活動內容,對知識進行升華和拓展,引導學生創造性地運用知識思考問題和解決問題,從而培養學生的創新意識和創新能力。
高中數學說課稿 篇2
尊敬的各位專家、評委:
上午好!
今天我說課的課題是人教A版必修2第二章第二節《直線與圓的位置關系》。
我嘗試利用新課標的理念來指導教學,對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。
一、教材分析
地位和作用
學生在初中的學習中已經了解直線與圓的位置關系,并知道可以利用直線與圓的焦點的個數以及圓心與直線的距離d與半徑r的關系判斷直線與圓的位置關系。但是,在初中學習時,利用圓心與直線的距離d與半徑r的關系判斷直線與圓的位置關系的方法卻以結論性的形式呈現。在高一學習了解析幾何后,要考慮的問題是如何掌握由直線和圓的方程判斷直線與圓的位置關系的方法。解決問題的方法主要是幾何法和代數法。其中幾何法應該是在初中學習的基礎上,結合高中所學的點到直線的距離公式求出圓心與直線的距離d后,比較與半徑r的關系。從而作出判斷,適可而止第引進用聯立方程組轉化為二次方程判別根的“純代數判別法”,并與“幾何法”欣賞比較,以決優劣,從而也深化了基本的“幾何法”。含參數的問題、簡單的弦的問題、切線問題等綜合問題作為進一步的拓展提高或綜合應用,也適度第引入課堂教學中,但以深化“判定直線與圓的位置關系”為目的,要控制難度。雖然學生學習解析幾何了,但是把幾何問題代數化無論是思維習慣還是具體轉化方法,學生仍是似懂非懂,因此應不斷強化,逐漸內化為學生的習慣和基本素質。
二、目標分析
(一)、教學目標
1、知識與技能
理解直線與圓的位置的種類;
利用平面直角坐標系中點到直線的距離公式求圓心到直線的距離;
會用點到直線的距離來判斷直線與圓的位置關系。
2、過程與方法
設直線L:ax+by+c=o,圓C:x2+y2+Dx+Ey+F=0,圓的半徑為r,圓心(- ,- )到直線的距離為d,則判別直線與圓的位置關系的根據有以下幾點:
當d >r時,直線l與圓c相離;
當d =r時,直線l與圓c相切;
當d
3、情態與價值觀
讓學生通過觀察圖形,理解并掌握直線與圓的位置關系,培養學生數形結合的思想。
(二)、教學重點與難點
1、重點:直線與圓的位置關系的幾何圖形及其判斷方法。
2、難點:用坐標判斷直線與圓的位置關系。
三、教法學法分析
(一)、教法
教學過程是教師和學生共同參與的過程,啟發學生自主性學習,充分調動學生的積極性、主動性;有效地滲透數學思想方法,提高學生素質。根據這樣的原則和所要完成的教學目標,并為激發學生的學習興趣,我采用如下的教學方法:
1、啟發引導學生思考、分析、實驗、探索、歸納。
2、采用“從特殊到一般”、“從具體到抽象”的方法。
3、體現“對比聯系”、“數形結合”及“分類討論”的思想方法。
4、投影儀演示法。
在整個過程中,應以學生看,學生想,學生議,學生練為主體,教師在學生仔細觀察、類比、想象的基礎上通過問題串的形式加以引導點撥,對照,歸納,整理,只有這樣,才能喚起學生對原有知識的回憶,自覺地找到新舊知識的聯系,使新學知識更牢固,理解更深刻。
(二)、學法
建構主義學習理論認為,學習是學生積極主動地建構知識的過程,學習應該與學生熟悉的背景相聯系。在教學中,讓學生在問題情境中,經歷知識的形成和發展,通過觀察、操作、歸納、探索、交流、反思參與學習,認識和理解數學知識,學會學習,發展能力。
四、教學過程分析
(一)、教學過程設計
問題 設計意圖 師生活動
1、初中學過的平面幾何中,直線與圓的位置關系有幾類? 啟發學生由圖形獲取判斷直線與圓的位置關系的直觀認知,引入新課 師:讓學生之間進行討論,交流,引導學生觀察圖形,導入新課
生:看圖,并說出自己的看法
2、直線與圓的位置關系有幾種? 得出直線與圓的位置關系的幾何特征與種類 師:引導學生利用類比,歸納的思想,總結直線與圓的位置關系的種類,進一步神話數形結合的數學思想
生:學生觀察圖形,利用類比,歸納的思想,總結直線與圓的`位置關
3、在初中,我們怎么樣判斷直線與圓的位置關系呢?如何用直線與圓的方程判斷他們之間的位置關系呢?
你能說出判斷直線與圓的位置關系的兩
種方法嗎? 使學生回憶初中的數學知識,培養抽象的概括能力。
抽象判斷呢直線與圓的位置關系的思路和方法 師:引導學生回憶初中判斷直線與圓的位置關系的思想過程
生:回憶直線與圓的位置關系的判斷過程
師:引導學生從集合的角度判斷直線與圓的方法
生:利用圖形,尋求兩種方法的數學思路
5、你能用兩種判斷直線與圓的位置關系的數學思路解決例1的問題嗎? 體會判斷直線與圓的位置關系的思想方法,關注量與量的之間的關系 師:指導學生閱讀教材書上的例1
生:閱讀教材書上的例1,并完成教材書上的136頁的練習題2
6、通過學習教材書上的例1,你能總結下判斷直線與圓的位置 關系的步驟嗎? 是學生熟悉判斷直線與圓的位置關系的基本步驟 生:于都例1
師:分析例1 ,并展示解答過程,啟發學生概括判斷直線與圓的位置關系的基本步驟,注意給學生留有思考的時間
生:交流自己總結的步驟
7、通過學習教材書上的例2,你能說明例2中體現的數學思想方法嗎? 進一步深化數形結合的數學思想 師:指導學生閱讀并完成教材書上的例2 ,啟發學生利用數形結合的數學思想解決問題
生:閱讀教材書上的例2 ,并完成137的練習題
8、通過例2的學習,你發現了什么? 明確弦長的運算方法 師:引導并啟發學生探索直線與圓的相交弦的求法
生:通過分析,抽象,歸納,得出相交弦的運算方法
9、完成教材書上的136頁的習題1234 鞏固所學過的知識,進一步理解和掌握直線與圓的位置關系 師:指導學生完成練習題
生:互相討論交流,完成練習題
10、課堂小結
教師提出下列問題讓學生思考
通過直線與圓的位置關系的判斷,你學到什么了?
判斷直線與圓的位置關系有幾種方法?他們的特點是什么?
如何求直線與圓的相交弦長?
(二)、作業設計
作業分為必做題和選擇題,必做題是對本節課學生知識水平的反饋,選擇題是對本節課內容的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生的自主發展、合作探究的學習氛圍的形成。
我設計了以下作業:
必做題:課后習題A 1,2,3;
選擇題:課后習題B1,2,3;
(三)、板書設計
板書要基本體現課堂的內容和方法,體現課堂進程,能簡明扼要反映知識結構及其相互關系:能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。
五、評價分析
學生學習的結果評價固然重要,但是更重要的是學生學習的過程評價。我采用了及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對本節是否有一個完整的集訓,并進行及時的調整和補充。
以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。
謝謝!
高中數學說課稿 篇3
各位老師大家好!
我說課的內容是人教 版 A版必修2第三章第一節直線的傾斜角與斜率第一課時。
(一) 教材分析
本節課選自必修2第三章(解析幾何的第一章)第一節直線的傾斜角與斜率第一課時,直線的傾斜角和斜率解析幾何的重要概念;是刻畫直線傾斜程度的幾何要素與代數表示;學生在原有的對直線的有關性質及平面向量的相關知識理解的基礎上,重新以解析法的方式來研究直線相關性質,而本節課直線的傾斜角與斜率,是直線的重要的幾何性質,是研究直線的方程形式,直線的位置關系等的思維的起點;另外,本節課也初步向學生滲透解析幾何的基本思想和基本方法。因此,本課有著開啟全章、滲透方法,承前啟后的作用。
(二) 學情分析
本節課的 教學 對象是高二學生,這個年齡段的學生天性活潑,求知欲強,并且學習主動,在知識儲備上 知道兩點確定一條直線, 知道點與坐標的關系,實現了最簡單的形與數的轉化;了解刻畫傾斜程度可用角和正切值;具備了一定的數形結合的能力和分類討論的思想。但根據學生的認知規律,還沒有形成自覺地把數學問題抽象化的能力。所以在教學設計時需 從 學生的最近發展區進行探究學習,盡量讓不同層次的學生都經歷概念的形成、 鞏固 和應用過程。
(三)教學目標
1. 理解直線的傾斜角和斜率的概念, 理解直線的傾斜角的唯一性和斜率的存在性;
2. 掌握過兩點的直線斜率的計算公式 ;
3. 通過經 歷從具體實例抽象出數學概念的過程,培養學生觀察、分析和概括能力;
4 . 通過斜率概念的建立以及斜率公式的構建,幫助學生進一步體會數形結合的`思想,培養學
生嚴謹求簡的數學精神。
重點:斜率的概念,用代數方法刻畫直線斜率的過程,過兩點的直線斜率的計算公式。
難點: 直線的傾斜角與斜率的概念的形成 ,斜率公式的構建。
(四)教法和學法
課堂教學應有利于學生的數學素質的形成與發展,即在課堂教學過程中,創設問題的情景,激發學生主動的發現問題解決問題,充分調動學生學習的主動性、積極性;有效的滲透數學思想方法,發展學生個性思維品質,這是本節課的教學原則。 根據這樣的教學原則,考慮到學生首次接觸解析幾何的內容及研究方法,所以我采用 設置問題串 的形式 , 啟發引導 學生 類比、聯想,產生知識遷移 ;通過 幾何畫板演示實驗、探索交流 相結合的教學方法激發學生 觀察、實驗,體驗知識的形成過程 ;由此循序漸進 , 使學生很自然達到本節課的學習目標。
( 五) 教學過程
環節 1.指明研究方向 (3min)
平面上的點可以用坐標表示,也就是幾何問題代數化。那么我們生活中見到的很多優美的曲線能否用數來刻畫呢?
簡介17 世紀法國數學家笛卡爾和費馬的數學史 。
【設計意圖】 使學生對解析幾何的歷史以及它的研究方向有一個大致的了解
由此引入課題(直線的傾斜角與斜率)
環節2.活動探究(13min)
【設計意圖】 讓學生經歷探究過程后掌握傾斜角和斜率兩個概念,體會概念的產生是自然的,并不是硬性規定的。
(探究活動一:傾斜角概念的得出)
問題1. 如圖,對于平面直角坐標系內過兩點有且只有一條直線,過一點P的位置能確定嗎?如圖,這些不同直線的區別在哪里?
【設計意圖】引導學生發現過定點的不同直線,其傾斜程度不同。從而發現過直線上一點和直線的傾斜程度也能確定一條直線。
問題2. 在直角坐標系中,任何一條直線與x軸都有一個相對傾斜程度,可以用一個什么樣的幾何量來反映一條直線與x軸的相對傾斜程度呢?
【設計意圖】引導學生探索描述直線的傾斜程度的幾何要素, 由此引出傾斜角的概念:直線L與x軸相交,我們取x軸為基準,x軸正向與直線L向上的方向之間所成的角α叫做直線L的傾斜角。
問題3. 依據傾斜角的定義,小組合作探究傾斜角的范圍是多少?
(探究活動二:斜率概念的得出)
問題4. 日常生活中,還有沒有表示傾斜程度的量?
問題5 . 如果使用“傾斜角”的概念,坡度實際就是 傾斜角的正切值,由此你認為還可以用怎樣的量來刻畫直線的傾斜程度?
由學生已知坡度中“前進量”不能為0 ,補充 傾斜角 是90゜的直線 沒有斜率
【設計意圖】 遷移、類比得出 我們把 一條直線的 傾斜角 的正切值叫做 這條 直線的 斜率 , 讓學生感受數學概念來源于生活,并體驗從直觀到抽象的過程培養學生觀察、歸納、聯想的能力。
環節 3.過程體驗(斜率公式的發現)(10min)
問題6. 兩點能確定一條直線,那么兩點能確定一條直線的斜率么?
先由每名學生各自舉出兩個特殊的點。例如A(1,2)、B(3,4),獨立研究如何由這兩點求斜率,再通過學生相互討論,師生共同交流提煉出解決問題的一般方法,進而把這種方法遷移到一般化的問題上來。得出斜率公式k=y2y1。
為了深化對公式的理解,完善對公式的認識,我設計了如下三個思考問題:
思考1:如果直線AB/pic/p>
思考2:如果直線AB/pic/p>
思考3:交換A、B位置,對比值有影響嗎?
在學生充分思考、討論的基礎上,借助信息技術工具,一方面計算 的 值,另一方面計算傾斜角的正切值。讓學生親自操作幾何畫板,改變直線的傾斜程度,動態演示可以把教科書第84頁圖3.1-4所示的各種情況都展示出來,形象直觀,可使學生更好的把握斜率公式。
環節4. 操作建構(10min)
第一部分( 教材例一 ) : 如圖,已知A(3,2),B(-4,1),C(0,-1), 求 直線AB,BC,CA的斜率,并判斷傾斜角是銳角還是鈍角。
學生獨立完成后,請三位學生作答,師生共同評析,明確斜率公式的運用,強調可以從形的角度直接判斷直線的傾斜角是銳角還是鈍角,也可由直線的斜率的正負判斷。
第二部分 ( 教材例二 ) : 在平面直角坐標系中,畫出經過原 點且斜率分別為1,-1,2及-3的直線
本題要求學生畫圖,目的是加強數形結合,我將請兩位同學上臺板演,其余同學在練習本上完成,因為直線經過原點,所以只要在找出另外一點就可確定,再推導斜率公式時,學生已經知道,斜率k的值與直線上P1,P2的位置無關,因此,由已知直線的斜率畫直線時,可以再找出一個特殊點即可。
環節 5.小結作業(4min)
1、本節課你學到了哪些新的概念?他們之間有什么樣 的關系?
2、怎樣求出已知兩點的直線的斜率?
3 、本節課你還有哪些問題?
兩點 直線 傾斜角 斜率
一點一方向
作業: 必做題: P.86 第1,2,題
選做題: P.90 探究與發現:魔法師的地毯
以上五個環節環環相扣,層層深入,以明線和暗線雙線滲透。并注意調動學生自主探究與合作交流。注意教師適時的點撥引導,學生主體地位和教師的主導作用 得以 體現。能夠較好的實現教學目標,也使課標理念能夠很好的得到落實。
(六) 板書設計
3.1.1 直線的傾斜角與斜率
1定義: 傾斜角 學生板演
斜率
2.斜率k與傾斜角之間的關系
3.斜率公式
高中數學說課稿 篇4
一.說教材
1.本節課主要內容是線性規劃的意義以及線性約束條件、線性目標函數、可行域、可行解、最優解等概念,根據約束條件建立線性目標函數。應用線性規劃的圖解法解決一些實際問題。
2.地位作用:線性規劃是數學規劃中理論較完整、方法較成熟、應用較廣泛的一個分支,它可以解決科學研究、工程設計、經濟管理等許多方面的實際問題。簡單的線性規劃是在學習了直線方程的基礎上,介紹直線方程的一個簡單應用。通過這部分內容的學習,使學生進一步了解數學在解決實際問題中的應用,以培養學生學習數學的興趣、應用數學的意識和解決實際問題的能力。
3.教學目標
(1)知識與技能:了解線性規劃的意義以及線性約束條件、線性目標函數、可行域、可行解、最優解等概念,能根據約束條件建立線性目標函數。
了解并初步應用線性規劃的圖解法解決一些實際問題。
(2)過程與方法:提高學生數學地提出、分析和解決問題的能力,發展學生數學應用意識,力求對現實世界中蘊含的一些數學模式進行思考和作出判斷。
(3)情感、態度與價值觀:體會數形結合、等價轉化等數學思想,逐步認識數學的應用價值,提高學習數學的興趣,樹立學好數學的自信心。
4.重點與難點
重點:理解和用好圖解法
難點:如何用圖解法尋找線性規劃的最優解。
二.說教學方法
教學過程是教師和學生共同參與的過程,啟發學生自主性學習,充分調動學生的積極性、主動性;有效地滲透數學思想方法,提高學生素質。根據這樣的原則和所要完成的教學目標,并為激發學生的學習興趣,我采用如下的教學方法:
(1)啟發引導學生思考、分析、實驗、探索、歸納。這能充分調動學生的主動性和積極性。
(2)采用“從特殊到一般”、“化抽象為具體”、“化靜為動”的.方法。這有利于學生對知識進行主動建構;有利于突出重點、解決難點;也有利于發揮學生的創造性。
(3)體現“等價轉化”、“數形結合”的思想方法。這樣可發揮學生的主觀能動性,有利于提高學生的各種能力。
三.說學法指導
教給學生方法比教給學生知識更重要,本節課注重調動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:觀察分析、聯想轉化、動手實驗、練習鞏固。
(1)觀察分析:通過引例讓學生觀察化舊知為新知,造成學生認知沖突。
(2)聯想轉化:學生通過分析、探索、得出解決問題的方法。
(3)動手實驗:通過作圖、實驗、從而得出一般解題步驟。
(4)練習鞏固:讓學生知道數學重在運用,從而檢驗知識的應用情況,找出未掌握的內容及其差距。
四.說教學程序
1、導入課題: 由一個不等式組表示平面區域轉化為在此平面區域內一二元一次數的最值問題,造成學生認知沖突。
3、導學達標之一:創設情境、形成概念
通過引例的問題讓學生探索解決新問題的方法。
(設計意圖:利用已經學過的知識逐步分析,學以致用,使學生經歷數學知識的形成過程,從而提高學生數學的地提出、分析和解決問題的能力。)
然后老師逐步引導,動手實驗,化抽象為直觀。從而得到解決此類問題的方法,并對比引例給出相關概念:線性約束條件、目標函數、線性目標函數、線性規劃、可行解、可行域、最優解。并能根據引例提煉線性規劃問題的解法——圖解法。
(設計意圖:引導學生觀察和分析問題,激發學生的探索欲望,從而培養學生的解決問題和總結歸納的能力。)
4.導學達標之二:針對問題、舉例講解、形成技能
例一:課本61頁例3
(創設意境:,練習是使學生明白數學來源于實際又運用于實際,同時使學生進初步應用線性規劃的圖解法解決一些實際問題。)
6.鞏固目標:
練習一:學生做課堂練習P64例4
(叫學生提出解決問題的方法,并用多媒體展示,并根據問題的實際意義,考慮取值范圍。造成新的認知沖突,從而研究探索,得到整點最優解的一種求法。)
練習二:為了賺大錢,老張最近承包了一家具廠,可老張卻悶悶不樂,原來家具廠有方木料90m3,五合板600m2,老張準備加工成書桌和書廚出售,他通過調查了解到:生產每張書桌需要方木料0.1m3、五合板2m2,生產每個書櫥需要方木料0.2m3、五合板1m2,出售一張書桌可獲利潤80元,出售一個書櫥可獲利潤120元。老張卻不知如何安排?(電腦顯示問題)
(設計意圖:通過實際問題,激發學生興趣,培養學生的數學應用意識,力求學生能夠對現實生活中蘊含的一些數學模式進行思考和作出判斷。)
7.歸納與小結:
小結本課的主要學習內容是什么?(由師生共同來完成本課小結)
(創設意境:讓學生參與小結,引導學生對所學知識進行反思,有利于加強學生記憶和形成良好的數學思維習慣)
8.布置作業:
P64. 2
五.說板書設計
板書設計為表格式,這樣的板書簡明清楚,重點突出,加深學生對重點知識的理解和掌握,同時便于記憶,有利于提高教學效果。
高中數學說課稿 篇5
高中數學第三冊(選修)Ⅱ第一章第2節第一課時
一、教材分析
教材的地位和作用
期望是概率論和數理統計的重要概念之一,是反映隨機變量取值分布的特征數,學習期望將為今后學習概率統計知識做鋪墊。同時,它在市場預測,經濟統計,風險與決策等領域有著廣泛的應用,為今后學習數學及相關學科產生深遠的影響。
教學重點與難點
重點:離散型隨機變量期望的概念及其實際含義。
難點:離散型隨機變量期望的實際應用。
[理論依據]本課是一節概念新授課,而概念本身具有一定的抽象性,學生難以理解,因此把對離散性隨機變量期望的概念的教學作為本節課的`教學重點。此外,學生初次應用概念解決實際問題也較為困難,故把其作為本節課的教學難點。
二、教學目標
[知識與技能目標]
通過實例,讓學生理解離散型隨機變量期望的概念,了解其實際含義。
會計算簡單的離散型隨機變量的期望,并解決一些實際問題。
[過程與方法目標]
經歷概念的建構這一過程,讓學生進一步體會從特殊到一般的思想,培養學生歸納、概括等合情推理能力。
通過實際應用,培養學生把實際問題抽象成數學問題的能力和學以致用的數學應用意識。
[情感與態度目標]
通過創設情境激發學生學習數學的情感,培養其嚴謹治學的態度。在學生分析問題、解決問題的過程中培養其積極探索的精神,從而實現自我的價值。
三、教法選擇
引導發現法
四、學法指導
“授之以魚,不如授之以漁”,注重發揮學生的主體性,讓學生在學習中學會怎樣發現問題、分析問題、解決問題。
五、教學的基本流程設計
高中數學第三冊《離散型隨機變量的期望》說課教案.rar
高中數學說課稿 篇6
一、教材分析
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發展,又是本章集合知識的運用與鞏固,也為下一章函數的定義域和值域教學作鋪墊,起著鏈條的作用。同時,這部分內容較好地反映了方程、不等式、函數知識的內在聯系和相互轉化,蘊含著歸納、轉化、數形結合等豐富的數學思想方法,能較好地培養學生的觀察能力、概括能力、探究能力及創新意識。
(二)教學內容
本節內容分2課時學習。本課時通過二次函數的圖象探索一元二次不等式的解集。通過復習“三個一次”的關系,即一次函數與一元一次方程、一元一次不等式的關系;以舊帶新尋找“三個二次”的關系,即二次函數與一元二次方程、一元二次不等式的關系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數學中的和諧美,體驗成功的樂趣。
二、教學目標分析
根據教學大綱的要求、本節教材的特點和高一學生的認知規律,本節課的教學目標確定為:
知識目標——理解“三個二次”的關系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標——通過看圖象找解集,培養學生“從形到數”的轉化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標——創設問題情景,激發學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。
三、重難點分析
一元二次不等式是高中數學中最基本的不等式之一,是解決許多數學問題的重要工具。本節課的重點確定為:一元二次不等式的解法。
要把握這個重點。關鍵在于理解并掌握利用二次函數的圖象確定一元二次不等式解集的方法——圖象法,其本質就是要能利用數形結合的思想方法認識方程的解,不等式的解集與函數圖象上對應點的橫坐標的內在聯系。由于初中沒有專門研究過這類問題,高一學生比較陌生,要真正掌握有一定的難度。因此,本節課的難點確定為:“三個二次”的關系。要突破這個難點,讓學生歸納“三個一次”的關系作鋪墊。
四、教法與學法分析
(一)學法指導
教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此在教學中要不斷指導學生學會學習。本節課主要是教給學生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學習方法,這樣做增加了學生自主參與,合作交流的.機會,教給了學生獲取知識的途徑、思考問題的方法,使學生真正成了教學的主體;只有這樣做,才能使學生“學”有新“思”,“思”有新“得”,“練”有新“獲”,學生也才會逐步感受到數學的美,會產生一種成功感,從而提高學生學習數學的興趣;也只有這樣做,課堂教學才富有時代特色,才能適應素質教育下培養“創新型”人才的需要。
(二)教法分析
本節課設計的指導思想是:現代認知心理學——建構主義學習理論。
建構主義學習理論認為:應把學習看成是學生主動的建構活動,學生應與一定的知識背景即情景相聯系,在實際情景下進行學習,可以使學生利用已有知識與經驗同化和索引出當前要學習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節課采用“誘思引探教學法”。把問題作為出發點,指導學生“畫、看、說、用”。較好地探求一元二次不等式的解法。
五、課堂設計
本節課的教學設計充分體現以學生發展為本,培養學生的觀察、概括和探究能力,遵循學生的認知規律,體現理論聯系實際、循序漸進和因材施教的教學原則,通過問題情境的創設,激發興趣,使學生在問題解決的探索過程中,由學會走向會學,由被動答題走向主動探究。
(一)創設情景,引出“三個一次”的關系
本節課開始,先讓學生解一元二次方程x2-x-6=0,如果我把“=”改成“>”則變成一元二次不等式x2-x-6>0讓學生解,學生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構造懸念,激活學生的思維興趣。
為此,我設計了以下幾個問題:
1、請同學們解以下方程和不等式:
①2x-7=0;②2x-7>0;③2x-7<0
學生回答,我板書
高中數學說課稿 篇7
各位評委,老師們:大家好!
很高興參加這次說課活動。這對我來說也是一次難得的學習和鍛煉的機會,感謝各位老師在百忙之中來此予以指導。希望各位評委和老師們對我的說課內容提出寶貴意見。
我說課的內容是<平面向量>的教學,所用的教材是人民教育出版社出版的全日制普通高級中學教科書(試驗修訂本—必修)<數學>第一冊下,教學內容為第96頁至98頁第五章第一節。本校是浙江省一級重點中學,學生基礎相對較好。我在進行教學設計時,也充分考慮到了這一點。
下面我從教材分析,教學目標的確定,教學方法的選擇和教學過程的設計四個方面來匯報我對這節課的教學設想。
一說教材
(1)地位和作用
向量是近代數學中重要和基本的概念之一,有著深刻的幾何背景,是解決幾何問題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉化為向量的加(減)法,數乘向量,數量積運算(運算率),從而把圖形的基本性質轉化為向量的運算體系。向量是溝通代數,幾何與三角函數的一種工具,有著極其豐富的實際背景,在數學和物理學科中具有廣泛的應用。
平面向量的基本概念是在學生了解了物理學中的有關力,位移等矢量的概念的基礎上進一步對向量的深入學習。為學習向量的知識體系奠定了知識和方法基礎。
(2)教學結構的調整
課本在這一部分內容的教學為一課時,首先從小船航行的距離和方向兩個要素出發,抽象出向量的概念,并重點說明了向量與數量的區別。然后介紹了向量的幾何表示,向量的長度,零向量,單位向量,平行向量,共線向量,相等向量等基本概念。為使學生更好地掌握這些基本概念,同時深化其認知過程和探究過程。在教學中我將教學的順序做如下的調整:將本節教學中認知過程的教學內容適當集中,以突出這節課的主題;例題,習題部分主要由學生依照概念自行分析,獨立完成。
(3)重點,難點,關鍵
由于本節課是本章內容的第一節課,是學生學習本章的`基礎。為了本章后面知識的學習,首先必須掌握向量的概念,要抓住向量的本質:大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節課的重點。本節課是為高一后半學期學生設計的,盡管此時的學生已經有了一定的學習方法和習慣,但根據以往的教學經驗,多數學生對向量的認識還比較單一,僅僅考慮其大小,忽略其方向,這對學生的理解能力要求比較高,所以我認為向量概念也是這節課的難點。而解決這一難點的關鍵是多用復雜的幾何圖形中相等的有向線段讓學生進行辨認,加深對向量的理解。
二說教學目標的確定
根據本課教材的特點,新大綱對本節課的教學要求,學生身心發展的合理需要,我從三個方面確定了以下教學目標:
(1)基礎知識目標:理解向量,零向量,單位向量,共線向量,平行向量,相等向量的概念,會用字母表示向量,能讀寫已知圖中的向量。會根據圖形判定向量是否平行,共線,相等。
(2)能力訓練目標:培養學生觀察、歸納、類比、聯想等發現規律的一般方法,培養學生觀察問題,分析問題,解決問題的能力。
(3)情感目標:讓學生在民主、和諧的共同活動中感受學習的樂趣。
三說教學方法的選擇
Ⅰ教學方法
本節課我采用了”啟發探究式的教學方法,根據本課教材的特點和學生的實際情況在教學中突出以下兩點:
(1)由教材的特點確立類比思維為教學的主線。
從教材內容看平面向量無論從形式還是內容都與物理學中的有向線段,矢量的概念類似。因此在教學中運用類比作為思維的主線進行教學。讓學生充分體會數學知識與其他學科之間的聯系以及發生與發展的過程。
(2)由學生的特點確立自主探索式的學習方法
通常學生對于概念課學起來很枯燥,不感興趣,因此要考慮學生的情感需要,找一些學生感興趣的題材來激發學生的學習興趣,另外,學生都有表現自己的欲望,希望得到老師和其他同學的認可,要多表揚,多肯定來激勵他們的學習熱情。考慮到我校學生的基礎較好,思維較為活躍,對自主探索式的學習方法也有一定的認識,所以在教學中我通過創設問題情境,啟發引導學生運用科學的思維方法進行自主探究。將學生的獨立思考,自主探究,交流討論等探索活動貫穿于課堂教學的全過程,突出學生的主體作用。
Ⅱ教學手段
本節課中,除使用常規的教學手段外,我還使用了多媒體投影儀和計算機來輔助教學。多媒體投影為師生的交流和討論提供了平臺;計算機演示的作圖過程則有助于滲透數形結合思想,更易于對概念的理解和難點的突破。
四教學過程的設計
Ⅰ知識引入階段———提出學習課題,明確學習目標
(1)創設情境——引入概念
數學學習應該與學生的生活融合起來,從學生的生活經驗和已有的知識背景出發,讓他們在生活中去發現數學、探究數學、認識并掌握數學。
由生活中具體的向量的實例引入:大海中船只的航線,中國象棋中”馬”,”象”的走法等。這些符合高中學生思維活躍,想象力豐富的特點,有利于激發學生的學習興趣。
(2)觀察歸納——形成概念
由實例得出有向線段的概念,有向線段的三個要素:起點,方向,長度。明確知道了有向線段的起點,方向和長度,它的終點就唯一確定。再有目的的進行設計,引導學生概括總結出本課新的知識點:向量的概念及其幾何表示。
(3)討論研究——深化概念
在得到概念后進行歸納,深化,之后向學生提出以下三個問題:
①向量的要素是什么?
②向量之間能否比較大小?
③向量與數量的區別是什么?
同時指出這就是本節課我們要研究和學習的主題。
Ⅱ知識探索階段———探索平面向量的平行向量。相等向量等概念
(1)總結反思——提高認識
方向相同或相反的非零向量叫平行向量,也即共線向量,并且規定0與任一向量平行.長度相等且方向相同的向量叫相等向量,規定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。
(2)即時訓練—鞏固新知
為了使學生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設計了一組即時訓練題,通過學生的觀察嘗試,討論研究,教師引導來鞏固新知識。
[練習1]判斷下列命題是否正確,若不正確,請簡述理由.
①向量與是共線向量,則A、B、C、D四點必在一直線上;
②單位向量都相等;
③任一向量與它的相反向量不相等;
④四邊形ABCD是平行四邊形的充要條件是=;
⑤模為0是一個向量方向不確定的充要條件;
⑥共線的向量,若起點不同,則終點一定不同.
[練習2]下列命題正確的是( )
A.a與b共線,b與c共線,則a與c也共線
B.任意兩個相等的非零向量的始點與終點是一平行四邊形的四頂點
C.向量a與b不共線,則a與b都是非零向量
D.有相同起點的兩個非零向量不平行
Ⅲ知識應用階段————共線向量,相等向量等概念的初步應用
在本階段的教學中,我采用的是課本上一道典型的例題:在一個復雜圖形中觀察,辨認平行,相等的有向線段。選用本題的目的是讓學生進行獨立思考,自主探究,交流討論等探索活動,加深對概念的理解和對難點的突破。
例如圖所示,設O是正六邊形ABCDEF的中心,分別寫出圖中與向量相等的向量。(同時思考:向量與相等么?向量與相等么?)
具體教學安排如下:
(1)分析解決問題
先引導學生分析解決問題。包括向量的概念,:向量相等的概念。抓住相等向量概念的實質:兩個向量只有當它們的模相等,同時方向又相同時,才能稱它們相等。進而進行正確的辨認,直至最終解決問題。
(2)歸納解題方法
主要引導學生歸納以下兩個問題:①零向量的方向是任意的,它只與零向量相
等;②兩個向量只要它們的模相等,方向相同就是相等向量。一個向量只要不改變它的大小和方向,是可以任意平行移動的,既向量是自由的。
Ⅳ學習,小結階段———歸納知識方法,布置課后作業
本階段通過學習小結進行課堂教學的反饋,組織和指導學生歸納知識,技能,方法的一般規律,為后續學習打好基礎。
具體的教學安排如下:
(1)知識,方法小結在知識層面上我首先引導學生回顧本節課的主要內容,提醒學生要抓住向量的本質:大小與方向,對它們進行類比,加深對每個概念的理解。
在方法層面上我將帶領學生回顧探索過程中用到的思維方法和數學方法如:
類比,數形結合,等價轉化等進行強調。
(2)布置課后作業
閱讀教材96至97頁內容,整理課堂筆記,習題5。1第1,2,3題。
高中數學說課稿 篇8
說課目標
(1)知識目標:掌握拋物線的定義,掌握拋物線的四種標準方程形式,及其對應的焦點、準線。
(2)能力目標:通過對拋物線概念和標準方程的學習,培養學生分析和概括的能力,提高建立坐標系的能力,由圓錐曲線的統一定義,形成學生對事物運動變化、對立、統一的辨證唯物主義觀點。
(3)德育目標:通過拋物線概念和標準方程的學習,培養學生勇于探索、嚴密細致的科學態度,通過提問、討論、思考等教學活動,調動學生積極參與教學,培養良好的學習習慣。
教學重點:(1)拋物線的定義及焦點、準線;
(2)利用坐標法求出拋物線的四種標準方程;
(3)會根據拋物線的焦點坐標,準線方程求拋物線的標準方程。
教學難點:(1)拋物線的四種圖形及標準方程的區分;
(2)拋物線定義及焦點、準線等知識的靈活運用。
說課方法:啟發引導法(通過橢圓與雙曲線第二定義引出拋物線)。
依據建構主義教學原理,通過類比、歸納把新知識化歸到原有的認知結構中去(二次函數與拋物線方程的對比,移圖與建立適當建立坐標系的方法的歸納)。
利用多媒體教學
說課過程:
一、課題引入
利用學生已有知識提問學生:1、橢圓的第二種定義:到定點與到定直線的距離的比是小于1的常數的點的軌跡是橢圓。(用課件演示)
2、雙曲線的第二種定義:到定點與到定直線的距離的比是大于1的常數的點的軌跡是雙曲線。(用課件演示)
由此引出:到定點的距離和到定直線的距離的比是等于1的常數的點的軌跡
是什么?
(以問題為出發點,創設情景,提高學生求知欲)
教師用直尺、三角板和細繩演示,學生觀察所得曲線。
從而引出本節課的學習內容。
二、講授新課
1.對拋物線的初步認識
物理中拋物線的運動軌跡;數學中二次函數的圖象;生活中拋物線的實例(圖片顯示)等。
2.拋物線的定義
3.拋物線標準方程的推導:①學生回顧求曲線方程的'步驟(建系、設點、列方程);
②若焦點F和準線的距離為()這樣建立坐標系?由學生思考:可能出現的結果:
四、課堂小結
1、本節課的內容:拋物線的定義,焦點、準線的意義及四種標準方程;
2、理解參數的幾何意義(焦準距)
3、利用坐標法求曲線方程是坐標系的適當選取。
課后作業:119頁習題8.52,4
設計說明:學生在初中學習二次函數時知道二次函數的圖象是一個拋物線,在物理的學習中也接觸過拋物線(物體的運動軌跡)。因而對拋物線的認識比對前面學習的兩種圓錐曲線橢圓和雙曲線更多。所以學生學起來會輕松。但是要注意的是,現在所學的拋物線是方程的曲線而不是函數的圖象。本節內容是在學習了橢圓和雙曲線的基礎上,利用圓錐曲線的第二定義統一進行展開的,因而對于拋物線的系統學習具有雙重的目標性。
拋物線作為點的軌跡,其標準方程的推導過程充滿了辨證法,處處是數與形之間的對照和相互轉化。而要得到拋物線的標準方程,必須建立適當的坐標系,還要依賴焦點和準線的相互位置關系,這是拋物線標準方程有四種而不象橢圓和雙曲線只有兩種形式。因而拋物線的標準方程的推導也是培養辨證唯物主義觀點的好素材。
利用圓錐曲線第二定義通過類比方法,引導學生觀察和對比,啟發學生猜想與概括,利用建立坐標系求出拋物線的四種標準方程,讓每一個學生都能動手,動口,動腦參與教學過程,真正貫徹“教師為主導,學生為主體”的教學思想。對于標準方程中的參數及其幾何意義,焦點坐標和準線方程與的關系是本節課的重點內容,必須讓學生掌握如何根據標準方程求、焦點坐標、準線方程或根據后三者求拋物線的標準方程。特別對于一些有關距離的問題,要能靈活運用拋物線的定義給予解決。
當前素質教育的主流是培養學生的能力,讓學生學會學習。本節課采用學生通過探索、觀察、對比分析,自己發現結論的學習方法,培養了學生邏輯思維能力,動手實踐能力以及探索的精神。
高中數學說課稿 篇9
一、教材分析:
《向量的加法》是《必修》4第二章第二單元中“平面向量的線性運算”的第一節課。本節內容有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學習向量的減法運算及其幾何意義、向量的數乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在“平面向量”及“空間向量”中有很重要的地位。
二、學情分析:
學生在上節課中學習了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動,這是學習本節內容的基礎。學生對數的運算了如指掌,并且在物理中學過力的合成、位移的合成等矢量的加法,所以向量的加法可通過類比數的加法、以所學的物理模型為背景引入,這樣做有利于學生更好地理解向量加法的意義,準確把握兩個加法法則的特點。
三、教學目的:
1、通過對向量加法的探究,使學生掌握向量加法的概念,結合物理學實際理解向量加法的意義。能正確領會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。
2、在應用活動中,理解向量加法滿足交換律和結合律以及表述兩個運算律的幾何意義。掌握有特殊位置關系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。
3、通過本節的學習,培養學生類比、遷移、分類、歸納等數學方面的能力。
四、教學重、難點
重點:向量的加法法則。探究向量的加法法則并正確應用是本課的重點。兩個加法法則各有特點,聯系緊密,你中有我,我中有你,實質相同,但是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講內容,平行四邊形法則在本課中所占份量略少于三角形法則。
難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學生認識到三角形法則的實質是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構成三角形。
五、教學方法
本節采用以下教學方法:1、類比:由數的加法運算類比向量的加法運算。2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發現三角形法則適用于任意向量相加;通過圖形,觀察得出向量加法滿足交換律、結合律等,這些都體現探究式教學法的運用。3、講解與練習:對兩個法則特點的分析,例題都采取了引導與講解的方法,學生課堂完成教材中的練習。4、多媒體技術的運用,能直觀地表現向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。
六、數學思想的體現:
1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規定,這樣對任意向量的加法都做了討論,線索清楚。
2、類比思想:使之與數的加法進行類比,使學生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從對比中看出兩者的不同,效果較好。
3、歸納思想:主要體現在以下三個環節①學完平行四邊形法則和三角形法則后,歸納總結,對不共線向量相加,兩個法則都可以選用。②由共線向量的加法總結出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。③對向量加法的結合律和探討中,又使學生發現了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環節中的運用,使得學生對兩個加法法則,尤其是三角形法則的.理解,步步深入。
七、教學過程:
1、回顧舊知:本節要進行向量的平移,且對向量加法分共線與不共線兩種情況,所以要復習向量、相等向量、共線向量等概念,這些都是新課學習中必要的知識鋪墊。
2、引入新課:
(1)平行四邊形法則的引入。
學生在物理學中雖然接觸過位移的合成,但是并沒有形成三角形法則的概念;而對平行四邊形法則學生已學過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,但是物理中力的合成是在有相同的作用點的條件下合成的,引入到數學中向量加法的平行四邊形法則,所給出的圖形也是現成的平行四邊形,而學生剛學完相等向量,對相等向量的概念還沒有深刻的認識,易產生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要通過講解例1,使學生認識到可以通過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。
設計意圖:本著從學生最熟悉、離學生最近的知識經驗為接入點,用學生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學生容易接受,也使學科間的滲透發揮了作用,加深了學生對向量加法的平行四邊形法則的“起點相同”這一特點的認識,例1的講解使學生認識到當表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學生完成對平行四邊形法則理解真正到位。
(2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。
所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學生也起到了示例的作用。于是前面的例1還可以利用三角形法則來做。
這時,總結出兩個不共線向量求和時,平行四邊形法則與三角形法則都可以用。
設計意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學生從向何意義上認識到兩個法則之間的密切聯系,理解它們的實質,而且銜接自然,能夠使學生對比地得出兩個法則的特點與實質,并對兩個法則的特點有較深刻的印象。
(3)共線向量的加法
方向相同的兩個向量相加,對學生來說較易完成,“將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度。”引導學生分析作法,結果發現還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。
方向相反的兩個向量相加,對學生來說是個難點,首先從作圖上不知道怎樣做。但是學生學過有理數加法中的異號兩數相加:“異號兩數相加,用較大
的絕對值減去較小的絕對值,符號取絕對值較大的數的符號。”類比異號兩數相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由老師引導學生嘗試運用三角形法則去做,發現結論正確。
反思過程,學生自然會想到方向相同的兩個向量相加,類似于同號兩數相加。這說明兩個共線向量相加依然可用三角形法則 通過以上幾個環節的討論,可以作個簡單的小結:兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。
設計意圖:通過對共線向量加法的探討,拓寬了學生對三角形法則的認識,使得不同位置的向量相加都有了依據,并且采用類比的方法,使學生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,可以化解難點。
(4)向量加法的運算律
①交換律:交換律是利用平行四邊形法則的圖形,又結合三角
形法則得出,理解起來沒什么困難,再一次強化了學生對兩個法則特點及實質的認識。
②結合律:結合律是通過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結果相同。
接下來是對應的兩個練習,運用交換律與結合律計算向量的和。
設計意圖:運算律的引入給加法運算帶來方便,從后面的練習中學生能夠體會到這點。由結合律還使學生發現,多個向量相加,同樣可以運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最后一個向量的終點。這樣使學生明白,三角形法則適用于任意多個向量相加。
3、小結
先由學生小結,檢查學生對本課重要知識的認識,也給學生一個概括本節知識的機會,然后用課件展示小結內容,使學生印象更深。
(1)平行四邊形法則:起點相同,適用于不共線向量的求和。
(2)三角形法則首尾相接,適用于任意多個向量的求和。
(3)運算律
【演講比賽作文】相關文章:
演講比賽作文 演講比賽08-15
演講比賽作文(經典)12-05
演講比賽作文【熱】12-16
推薦演講比賽作文02-18
演講比賽作文通用04-24
【熱門】演講比賽作文12-16
演講比賽作文【推薦】12-17
【熱】演講比賽作文12-17
演講比賽作文(精選55篇)10-17
演講比賽作文(精選18篇)10-27