<address id="ousso"></address>
<form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
  1. 愛國作文

    時間:2025-11-01 11:04:56 愛國 我要投稿

    實用的愛國作文匯編9篇

      作為一位無私奉獻的人民教師,通常需要用到說課稿來輔助教學,借助說課稿可以提高教學質量,取得良好的教學效果。那么什么樣的說課稿才是好的呢?下面是小編整理的高中數學說課稿7篇,希望對大家有所幫助。

    實用的愛國作文匯編9篇

    高中數學說課稿 篇1

      一、教材分析

      (一)教材的地位和作用

      “一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發展,又是本章集合知識的運用與鞏固,也為下一章函數的定義域和值域教學作鋪墊,起著鏈條的作用。同時,這部分內容較好地反映了方程、不等式、函數知識的內在聯系和相互轉化,蘊含著歸納、轉化、數形結合等豐富的數學思想方法,能較好地培養學生的觀察能力、概括能力、探究能力及創新意識。

      (二)教學內容

      本節內容分2課時學習。本課時通過二次函數的圖象探索一元二次不等式的解集。通過復習“三個一次”的關系,即一次函數與一元一次方程、一元一次不等式的關系;以舊帶新尋找“三個二次”的關系,即二次函數與一元二次方程、一元二次不等式的關系;采用“畫、看、說、用”的`思維模式,得出一元二次不等式的解集,品味數學中的和諧美,體驗成功的樂趣。

      二、教學目標分析

      根據教學大綱的要求、本節教材的特點和高一學生的認知規律,本節課的教學目標確定為:

      知識目標——理解“三個二次”的關系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

      能力目標——通過看圖象找解集,培養學生“從形到數”的轉化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

      情感目標——創設問題情景,激發學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。

      三、重難點分析

      一元二次不等式是高中數學中最基本的不等式之一,是解決許多數學問題的重要工具。本節課的重點確定為:一元二次不等式的解法。

      要把握這個重點。關鍵在于理解并掌握利用二次函數的圖象確定一元二次不等式解集的方法——圖象法,其本質就是要能利用數形結合的思想方法認識方程的解,不等式的解集與函數圖象上對應點的橫坐標的內在聯系。由于初中沒有專門研究過這類問題,高一學生比較陌生,要真正掌握有一定的難度。因此,本節課的難點確定為:“三個二次”的關系。要突破這個難點,讓學生歸納“三個一次”的關系作鋪墊。

      四、教法與學法分析

      (一)學法指導

      教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此在教學中要不斷指導學生學會學習。本節課主要是教給學生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學習方法,這樣做增加了學生自主參與,合作交流的機會,教給了學生獲取知識的途徑、思考問題的方法,使學生真正成了教學的主體;只有這樣做,才能使學生“學”有新“思”,“思”有新“得”,“練”有新“獲”,學生也才會逐步感受到數學的美,會產生一種成功感,從而提高學生學習數學的興趣;也只有這樣做,課堂教學才富有時代特色,才能適應素質教育下培養“創新型”人才的需要。

      (二)教法分析

      本節課設計的指導思想是:現代認知心理學——建構主義學習理論。

      建構主義學習理論認為:應把學習看成是學生主動的建構活動,學生應與一定的知識背景即情景相聯系,在實際情景下進行學習,可以使學生利用已有知識與經驗同化和索引出當前要學習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

      本節課采用“誘思引探教學法”。把問題作為出發點,指導學生“畫、看、說、用”。較好地探求一元二次不等式的解法。

      五、課堂設計

      本節課的教學設計充分體現以學生發展為本,培養學生的觀察、概括和探究能力,遵循學生的認知規律,體現理論聯系實際、循序漸進和因材施教的教學原則,通過問題情境的創設,激發興趣,使學生在問題解決的探索過程中,由學會走向會學,由被動答題走向主動探究。

      (一)創設情景,引出“三個一次”的關系

      本節課開始,先讓學生解一元二次方程x2-x-6=0,如果我把“=”改成“>”則變成一元二次不等式x2-x-6>0讓學生解,學生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構造懸念,激活學生的思維興趣。

      為此,我設計了以下幾個問題:

      1、請同學們解以下方程和不等式:

      ①2x-7=0;②2x-7>0;③2x-7<0

      學生回答,我板書

    高中數學說課稿 篇2

      高中數學說課稿模板

      課題:_________________________(說課稿)

      一、說教材:

      1、地位、作用和特點:

      《________________》是高中數學課本第______冊(____修)的第____章“________”的第______節內容。

      本節是在學習了___________________________________之后編排的。通過本節課的學習,既可以對_____________________________的知識進一步鞏固和深化,又可以為后面學習_________________________打下基礎,所以_________________是本章的重要內容。此外,《________________________》的知識與我們日常生活、生產、科學研究_________________________有著密切的聯系,因此學習這部分有著廣泛的現實意義。本節的特點之一是:____________________; 特點之二是:_________________。

      2、教學目標:

      根據《教學大綱》的要求和學生已有的知識基礎和認知能力,確定以下教學目標:

      (1)知識目標:A、B、C

      (2)能力目標:A、B、C

      (3)德育目標:A、B

      3、教學的重點和難點:

      (1)教學重點:

      (2)教學難點:

      二、說教法:

      基于上面的教材分析,我根據自己對研究性學習“啟發式”教學模式和新課程改革的理論認識,結合本校學生實際,主要突出了幾個方面:一是創設問題情景,充分調動學生求知欲,并以此來激發學生的探究心理。二是運用啟發式教學方法,就是把教和學的各種方法綜合起來統一組織運用于教學過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內外的綜合。并且在整個教學設計盡量做到注意學生的心理特點和認知規律,觸發學生的思維,使教學過程真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數學思考方法(聯想法、類比法、數形結合等一般科學方法)。讓學生在探索學習知識的過程中,領會常見數學思想方法,培養學生的探索能力和創造性素質。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應在處理教學內容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節課設計如下教學程序:

      三、說學法:

      學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應盡量避免單純地、直露地向學生灌輸某種學習方法。有效的能被學生接受的學法指導應是滲透在教學過程中進行的,是通過優化教學程序來增強學法指導的'目的性和實效性。在本節課的教學中主要滲透以下幾個方面的學法指導。

      1、培養學生學會通過自學、觀察、實驗等方法獲取相關知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。

      本節教師通過列舉具體事例來進行分析,歸納出________________________,并依據此知識與具體事例結合、推導出___________________________,這正是一個分析和推理的全過程。

      2、讓學生親自經歷運用科學方法探索的過程。_主要是努力創設應用科學方法探索、解決問題情境,讓學生在探索中體會科學方法,如在講授________________時,可通過_____________演示,創設探索______________規律的情境,引導學生以可靠的事實為基礎,經過抽象思維揭示內在規律,從而使學生領悟到把可靠的事實和深刻的理論思維結合起來的特點。

      3、讓學生在探索性實驗中自己摸索方法,觀察和分析現象,從而發現“新”的問題或探索出“新”的規律。從而培養學生的發散思維和收斂思維能力,激發學生的創造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結和推廣。

      4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質疑、發現等探究環節選擇合適的概念、規律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養成認真分析過程、善于比較的好習慣,又有利于培養學生通過現象發掘知識內在本質的能力。

      四、教學過程:

      (一)、課題引入:

      教師創設問題情景(創設情景:A、教師演示實驗。B、使用多媒體模擬一些比較有趣、與生活實踐比較有關的事例。C、講述數學科學史上的有關情況。)激發學生的探究欲望,引導學生提出接下去要研究的問題。

      (二)、新課教學:

      1、針對上面提出的問題,設計學生動手實踐,讓學生通過動手探索有關的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。

      2、組織學生進行新問題的實驗方法設計—這時在設計上最好是有對比性、數學方法性的設計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的實驗數據,模擬強化出實驗情況,由學生分析比較,歸納總結出知識的結構。

      (三)、實施反饋:

      1、課堂反饋,遷移知識(最好遷移到與生活有關的例子)。讓學生分析有關的問題,實現知識的升華、實現學生的再次創新。

      2、課后反饋,延續創新。通過課后練習,學生互改作業,課后研實驗,實現課堂內外的綜合,實現創新精神的延續。

      五、板書設計:

      在教學中我把黑板分為三部分,把知識要點寫在左側,中間知識推導過程,右邊實例應用。

      六、說課綜述:

      以上是我對《___________》這節教材的認識和對教學過程的設計。在整個課堂中,我引導學生回顧前面學過的_________________知識,并把它運用到對______________ 的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。

      ____總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎,以能力、方法為主線,有計劃培養學生的自學能力、觀察和實踐能力、思維能力、應用知識解決實際問題的能力和創造能力為指導思想。并且能從各種實際出發,充分利用各種教學手段來激發學生的學習興趣,體現了對學生創新意識的培養。

    高中數學說課稿 篇3

      一.教材分析:集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。

      二.目標分析:

      教學重點.難點

      重點:集合的含義與表示方法.

      難點:表示法的恰當選擇.

      教學目標

      l.知識與技能

      (1)通過實例,了解集合的含義,體會元素與集合的屬于關系;

      (2)知道常用數集及其專用記號;

      (3)了解集合中元素的確定性.互異性.無序性;

      (4)會用集合語言表示有關數學對象;

      2.過程與方法

      (1)讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.

      (2)讓學生歸納整理本節所學知識.

      3.情感.態度與價值觀

      使學生感受到學習集合的必要性,增強學習的積極性.

      三.教法分析

      1.教學方法:學生通過閱讀教材,自主學習.思考.交流.討論和概括,從而更好地完成本節課的教學目標.

      2.教學手段:在教學中使用投影儀來輔助教學.

      四.過程分析

      (一)創設情景,揭示課題

      1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學校、現在的班級。

      (2)問題:像"家庭"、"學校"、"班級"等,有什么共同特征?

      引導學生互相交流.與此同時,教師對學生的活動給予評價.

      2.活動:(1)列舉生活中的集合的例子;

      (2)分析、概括各實例的共同特征

      由此引出這節要學的內容。

      設計意圖:既激發了學生濃厚的學習興趣,又為新知作好鋪墊

      (二)研探新知,建構概念

      1.教師利用多媒體設備向學生投影出下面7個實例:

      (1)1-20以內的所有質數;

      (2)我國古代的四大發明;

      (3)所有的安理會常任理事國;

      (4)所有的正方形;

      (5)海南省在xxxx年9月之前建成的所有立交橋;

      (6)到一個角的兩邊距離相等的所有的點;

      (7)國興中學xxxx年9月入學的高一學生的全體.

      2.教師組織學生分組討論:這7個實例的共同特征是什么?

      3.每個小組選出--位同學發表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義.

      一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.

      4.教師指出:集合常用大寫字母A,B,c,D,...表示,元素常用小寫字母...表示.

      設計意圖:通過實例讓學生感受集合的概念,激發學習的興趣,培養學生樂于求索的精神

      (三)質疑答辯,發展思維

      1.教師引導學生閱讀教材中的相關內容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等.

      2.教師組織引導學生思考以下問題:

      判斷以下元素的全體是否組成集合,并說明理由:

      (1)大于3小于11的偶數;

      (2)我國的小河流.

      讓學生充分發表自己的.建解.

      3.讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.

      4.教師提出問題,讓學生思考

      (1)如果用A表示高-(3)班全體學生組成的集合,用表示高一(3)班的一位同學,是高一(4)班的一位同學,那么與集合A分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于.[來源:Z,xx,k.com]

      如果是集合A的元素,就說屬于集合A,記作.

      如果不是集合A的元素,就說不屬于集合A,記作.

      (2)如果用A表示"所有的安理會常任理事國"組成的集合,則中國.日本與集合A的關系分別是什么?請用數學符號分別表示.

      (3)讓學生完成教材第6頁練習第1題.

      5.教師引導學生回憶數集擴充過程,然后閱讀教材中的相交內容,寫出常用數集的記號.并讓學生完成習題1.1A組第1題.

      6.教師引導學生閱讀教材中的相關內容,并思考.討論下列問題:

      (1)要表示一個集合共有幾種方式?

      (2)試比較自然語言.列舉法和描述法在表示集合時,各自有什么特點?適用的對象是什么?

      (3)如何根據問題選擇適當的集合表示法?

      使學生弄清楚三種表示方式的優缺點和體會它們存在的必要性和適用對象。

      設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優缺點,從而突破難點。

      (四)鞏固深化,反饋矯正

      教師投影學習:

      (1)用自然語言描述集合{1,3,5,7,9};

      (2)用例舉法表示集合

      (3)試選擇適當的方法表示下列集合:教材第6頁練習第2題.

      設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象

      (五)歸納小結,布置作業[來源:Zxxk.com]

      小結:在師生互動中,讓學生了解或體會下例問題:

      1.本節課我們學習了哪些知識內容?

      2.你認為學習集合有什么意義?

      3.選擇集合的表示法時應注意些什么?

      設計意圖:通過回顧,對概念的發生與發展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。

      作業:

      1.課后書面作業:第13頁習題1.1A組第4題.

      2.元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種呢?如何表示?請同學們通過預習教材.

      五.板書分析

      PPT

      集合的含義與表示

      定義例1

      集合×××××××

      ××××××××××××××

      元素×××××××

      ×××××××例2

      元素與集合的關系×××××××

      ××××××××××××××

      作業××××××××××××××

    高中數學說課稿 篇4

    各位老師:

      大家好!我叫張西元。我說課的題目是《系統抽樣》,內容選自于蘇教版必修3第二章第一節,課時安排為一個課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析等五大方面來闡述我對這節課的分析和設計:

      一、教材分析

      1.教材所處的地位和作用

      學生已初步了解掌握了簡單隨機抽樣的兩種方法,即抽簽法與隨機數表法,在此基礎上進一步學習系統抽樣,它也是“統計學”的重要組成部分,通過對系統抽樣的學習,更加突出統計在日常生活中的應用,體現它在中學數學中的地位。

      2 教學的重點和難點

      重點:正確理解系統抽樣的概念,能夠靈活應用系統抽樣的方法解決統計問題。難點:當 不是整數時的處理辦法,個體編號具有某種周期性時,“壞樣本”的理解。

      二、教學目標分析

      1.知識與技能目標:

      (1)正確理解系統抽樣的概念;

      (2)掌握系統抽樣的一般步驟;

      (3)正確理解系統抽樣與簡單隨機抽樣的關系;

      2、過程與方法目標:

      通過對實際問題的探究,歸納應用數學知識解決實際問題的方法,理解分類討論的數學方法高考資源

      3、情感態度與價值觀目標:

      通過數學活動,感受數學對實際生活的需要,體會現實世界和數學知識的聯系

      三、教學方法與手段分析

      1.教學方法:為了充分讓學生自己分析、判斷、自主學習、合作交流。因此,我采用討論發現法教學。

      2.教學手段:通過各種教學媒體(計算機)調動學生參與課堂教學的主動性與積極性。

      四、教學過程分析

      (一)新課引入

      1、復習提問:

      (1)什么是簡單隨機抽樣?有哪兩種方法?

      (2)抽簽法與隨機數表法的一般步驟是什么?

      (3)簡單隨機抽樣應注意哪兩個原則?

      (4)什么樣的總體適合簡單隨機抽樣?為什么?

      [設計意圖]通過復習提問進一步理解掌握簡單隨機抽樣的概念方法和步驟?為新課學習打基礎

      2、實例探究

      實例:某學校為了了解高一年級學生對教師教學的意見,打算從高一年級500名學生中抽取50名進行調查,除了用簡單隨機抽樣獲取樣本外,你能否設計其他抽取樣本的方法?

      當總體數量較多時,應當如何抽取?結合具體事例探究問題,設計你的抽取樣本的方法。抽取的樣本公平性與代表性如何?學生自主探究后小組討論回答。

      [設計意圖]通過設置問題情境,讓學生參與問題解決的全過程,引導學生探究發現新知識新方法,完成從總體中抽取樣本,并發現“等距抽樣”的特性,從而形成感性的系統抽樣的概念與方法。這樣做既充分體現學生的主體地位和教師的主導作用,同時也較好地貫徹新課程所倡導“自主探究、合作交流”的學習方式。

      (二)新課講授

      1、系統抽樣的概念方法步驟

      (學生閱讀課本上的內容,教師引導學生總結歸納得出“系統抽樣”的`概念,并點明課題)

      [設計意圖]經歷實例探究過程,學生對系統抽樣的概念方法步驟應有大致了解,輔以教師引導,從具體到一般,本節新課題的學習便水到渠成。

      2、典型例題精析

      例1、某校高中三年級的300名學生已經編號為1,2,……,300,為了了解學生的學習情況,要按10%的比例抽取一個樣本,請用系統抽樣的方法進行抽取,并寫出過程。

      (教師題意分析,引導學生應用新知識新方法,學生分析思考,探究解題,小組討論后口述解題過程)

      [設計意圖]實例鞏固,在得出新課的有關知識之后,再次讓學生在解決實際問題的過程中,進一步理解掌握系統抽樣的方法步驟,達到學以致用的技能,培養“學數學,用數學”的意識。

      例2、某單位在職職工共624人,為了調查工人用于上班途中的時間,決定抽取10%的工人進行調查,試采用系統抽樣方法抽取所需的樣本。

      [設計意圖]當 不是整數時,設置本題讓學生嘗試回答,并形成一般思路與方法。

      (三) 練習鞏固

      1、將全班學生按男女生交替排成一路縱隊,用擲骰的方法在前6名學生中任選一名,用 表示該名學生在隊列中的序號,將隊列中序號為 ,(k=1,2,3,…)的學生抽出作為樣本,這種抽樣方法叫做系統抽樣嗎?為什么?其樣本的代表性與公平性如何?

      2、若按體重大小次序排成一路縱隊呢?

      [設計意圖]配合課本第60頁“邊空”問題:“請將這種抽樣方法與簡單隨機抽樣做一個比較,你認為系統抽樣能提高樣本的代表性嗎?為什么?”,幫助理解個體編號具有某種周期性時,樣本代表性較差的特點。同時分析系統抽樣的優點與缺點。

      (四)回顧小結

      1、師生共同回顧系統抽樣的概念方法與步驟

      2、與簡單隨機抽樣比較,系統抽樣適合怎樣的總體情況?

      3、當 不是整數時,一般步驟是什么?此時樣本的公平性與代表性如何?

      (五)布置作業

      課本第61頁的練習第1,2,3題

      設計意圖:課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。

    高中數學說課稿 篇5

      大家好!~今天我要講的是必修課程數學1中《集合》的相關內容。

      一、教材分析

      集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。

      本節課主要分為兩個部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關系。

      二、教學目標

      1、學習目標

      (1)通過實例,了解集合的含義,體會元素與集合之間的關系以及理解“屬于”關系;

      (2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

      2、能力目標

      (1)能夠把一句話一個事件用集合的方式表示出來。

      (2)準確理解集合與及集合內的元素之間的關系。

      3、情感目標

      通過本節的把實際事件用集合的方式表示出來,從而培養數學敏感性,了 解到數學于生活中。

      三、教學重點與難點

      重點 集合的基本概念與表示方法;

      難點 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡單的集合;

      四、教學方法

      (1)本課將采用探究式教學,讓學生主動去探索,激發學生的學習興趣。并分層教學,這樣可顧及到全體學生,達到優生得到培養,后進生也有所收獲的效果;

      (2)學生在老師的引導下,通過閱讀教材,自主學習、思考、交流、討論和概括,從而完成本節課的教學目標。

      五、學習方法

      (1)主動學習法:舉出例子,提出問題,讓學生在獲得感性認識的同時,

      教師層層深入,啟發學生積極思維,主動探索知識,培養學生思維想象 的綜合能力。

      (2)反饋補救法:在練習中,注意觀察學生對學習的反饋情況,以實現“培

      優扶差,滿足不同。”

      六、教學思路

      具體的思路如下

      復習的引入:講一些集合的相關數學及相關數學家的經歷故事!這可以讓學生更加了解數學史從何使學生對數學更加感興趣,有助于上課的效率!因為時間關系這里我就不說相關數學史咯。

      一、 引入課題

      軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?

      在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的'總體,而不是個別的對象,為此,我們將學習一個新的概念——集合,即是一些研究對象的總體。

      二、 正體部分

      學生閱讀教材,并思考下列問題:

      (1)集合有那些概念?

      (2)集合有那些符號?

      (3)集合中元素的特性是什么?

      (4)如何給集合分類?

      (一)集合的有關概念

      (1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,

      都可以稱作對象。

      (2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由

      這些對象的全體構成的集合。

      (3)元素:集合中每個對象叫做這個集合的元素。

      集合通常用大寫的拉丁字母表示,如A、B、C、??元素通常用小寫的拉丁字母表示,如a、b、c、??

      1。 思考:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,

      對學生的例子予以討論、點評,進而講解下面的問題。

      2、元素與集合的關系

      (1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A

      (2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作a?A

      要注意“∈”的方向,不能把a∈A顛倒過來寫。 (舉例)

      集合A={3,4,6,9}a=2 因此我們知道a?A

      3、集合中元素的特性

      (1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了。

      (2)互異性:集合中的元素一定是不同的。

      (3)無序性:集合中的元素沒有固定的順序。

      4、集合分類

      根據集合所含元素個屬不同,可把集合分為如下幾類:

      (1)把不含任何元素的集合叫做空集Ф

      (2)含有有限個元素的集合叫做有限集

      (3)含有無窮個元素的集合叫做無限集

      注:應區分?,{?},{0},0等符號的含義

      5、常用數集及其表示方法

      (1)非負整數集(自然數集):全體非負整數的集合。記作N

      (2)正整數集:非負整數集內排除0的集。記作N*或N+

      (3)整數集:全體整數的集合。記作Z

      (4)有理數集:全體有理數的集合。記作Q

      (5)實數集:全體實數的集合。記作R

      注:(1)自然數集包括數0。

      (2)非負整數集內排除0的集。記作N*或N+,Q、Z、R等其它數集內排

      除0的集,也這樣表示,例如,整數集內排除0的集,表示成Z*

      (二)集合的表示方法

      我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

      (1) 列舉法:把集合中的元素一一列舉出來,寫在大括號內。

      如:{1,2,3,4,5},{x2,3x+2,5y3—x,x2+y2},?;

      例1.(課本例1)

      思考2,引入描述法

      說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。

      (2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。 具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

      如:{x|x—3>2},{(x,y)|y=x2+1},{直角三角形},?;

      例2.(課本例2)

      說明:(課本P5最后一段)

      思考3:(課本P6思考) 強調:描述法表示集合應注意集合的代表元素

      {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。

      辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。

      說明:列舉法與描述法各有優點,應該根據具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。

      (三)課堂練習(課本P6練習)

      三、 歸納小結與作業

      本節課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。

      書面作業:習題1。1,第1— 4題

    高中數學說課稿 篇6

      一、教材分析

      1.《指數函數》在教材中的地位、作用和特點

      《指數函數》是人教版高中數學(必修)第一冊第二章“函數”的第六節內容,是在學習了《指數》一節內容之后編排的。通過本節課的學習,既可以對指數和函數的概念等知識進一步鞏固和深化,又可以為后面進一步學習對數、對數函數尤其是利用互為反函數的圖象間的關系來研究對數函數的性質打下堅實的概念和圖象基礎,又因為《指數函數》是進入高中以后學生遇到的第一個系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學習基礎,所以《指數函數》不僅是本章《函數》的重點內容,也是高中學段的主要研究內容之一,有著不可替代的重要作用。

      此外,《指數函數》的知識與我們的日常生產、生活和科學研究有著緊密的聯系,尤其體現在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學習這部分知識還有著廣泛的現實意義。本節內容的特點之一是概念性強,特點之二是凸顯了數學圖形在研究函數性質時的重要作用。

      2.教學目標、重點和難點

      通過初中學段的學習和高中對集合、函數等知識的系統學習,學生對函數和圖象的關系已經構建了一定的認知結構,主要體現在三個方面:

      知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡單的函數概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數初步轉化到從集合與對應的觀點來認識函數。

      技能維度:學生對采用“描點法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質做好準備。

      素質維度:由觀察到抽象的數學活動過程已有一定的體會,已初步了解了數形結合的思想。

      鑒于對學生已有的知識基礎和認知能力的分析,根據《教學大綱》的要求,我確定本節課的教學目標、教學重點和難點如下:

      (1)知識目標:

      ①掌握指數函數的概念;

      ②掌握指數函數的圖象和性質;

      ③能初步利用指數函數的概念解決實際問題;

      (2)技能目標:

      ①滲透數形結合的基本數學思想方法

      ②培養學生觀察、聯想、類比、猜測、歸納的能力;

      (3)情感目標:

      ①體驗從特殊到一般的學習規律,認識事物之間的普遍聯系與相互轉化,培養學生用聯系的觀點看問題②通過教學互動促進師生情感,激發學生的學習興趣,提高學生抽象、概括、分析、綜合的能力

      ③領會數學科學的應用價值。

      (4)教學重點:指數函數的圖象和性質。

      (5)教學難點:指數函數的圖象性質與底數a的關系。

      突破難點的關鍵:尋找新知生長點,建立新舊知識的聯系,在理解概念的基礎上充分結合圖象,利用數形結合來掃清障礙。

      二、教法設計

      由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖通過這一節課的教學達到不僅使學生初步理解并能簡單應用指數函數的知識,更期望能引領學生掌握研究初等函數圖象性質的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養學生學習能力的目的,我根據自己對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面:

      1.創設問題情景.按照指數函數的在生活中的實際背景給出兩個實例,充分調動學生的學習興趣,激發學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。

      2.強化“指數函數”概念.引導學生結合指數的有關概念來歸納出指數函數的定義,并向學生指出指數函數的形式特點,請學生思考對于底數a是否需要限制,如不限制會有什么問題出現,這樣避免了學生對于底數a范圍分類的不清楚,也為研究指數函數的圖象做了“分類討論”的鋪墊。

      3.突出圖象的作用.在數學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數學家曾經說過“數離形時少直觀,形離數時難入微”,而在研究指數函數的性質時,更是直接由圖象觀察得出性質,因此圖象發揮了主要的作用。

      4.注意數學與生活和實踐的聯系.數學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關的生活問題,力圖使學生了解到數學的基礎學科作用,培養學生的數學應用意識。

      三、學法指導

      本節課是在學習完“指數”的概念和運算后編排的,針對學生實際情況,我主要在以下幾個方面做了嘗試:

      1.再現原有認知結構。在引入兩個生活實例后,請學生回憶有關指數的概念,幫助學生再現原有認知結構,為理解指數函數的'概念做好準備。

      2.領會常見數學思想方法。在借助圖象研究指數函數的性質時會遇到分類討論、數形結合等基本數學思想方法,這些方法將會貫穿整個高中的數學學習。

      3.在互相交流和自主探究中獲得發展。在生活實例的課堂導入、指數函數的性質研究、例題與訓練、課內小節等教學環節中都安排了學生的討論、分組、交流等活動,讓學生變被動的接受和記憶知識為在合作學習的樂趣中主動地建構新知識的框架和體系,從而完成知識的內化過程。

      4.注意學習過程的循序漸進。在概念、圖象、性質、應用、拓展的過程中按照先易后難的順序層層遞進,讓學生感到有挑戰、有收獲,跳一跳,夠得著,不同難度的題目設計將盡可能照顧到課堂學生的個體差異。

      四、程序設計

      在設計本節課的教學過程中,本著遵循學生的認知規律、讓學生去經歷知識的形成與發展過程的原則,我設計了如下的教學程序,啟發學生逐步發現和認識指數函數的圖象和性質。

      1.創設情景、導入新課

      教師活動:

      ①用電腦展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細胞分裂的例子,

      ②將學生按奇數列、偶數列分組。

      學生活動:

      ①分別寫出計算機價格y與經過月份x的關系式和細胞個數y與分裂次數x的關系式,并互相交流;

      ②回憶指數的概念;

      ③歸納指數函數的概念;

      ④分析出對指數函數底數討論的必要性以及分類的方法。

      設計意圖:通過生活實例激發學生的學習動機,,掃清由概念不清而造成的知識障礙,培養學生思維的主動性, 為突破難點做好準備;

      2.啟發誘導、探求新知

      教師活動:

      ①給出兩個簡單的指數函數并要求學生畫它們的圖象②在準備好的小黑板上規范地畫出這兩個指數函數的圖象③板書指數函數的性質。

      學生活動:

      ①畫出兩個簡單的指數函數圖象

      ②交流、討論

      ③歸納出研究函數性質涉及的方面

      ④總結出指數函數的性質。

      設計意圖:讓學生動手作簡單的指數函數的圖象對深刻理解本節課的內容有著一定的促進作用,在學生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,達到進一步規范學生的作圖習慣的目的,然后借助“函數作圖器”用多媒體將指數函數的圖象推廣到一般情況,學生就會很自然的通過觀察圖象總結出指數函數的性質,同時對于底數的討論也就變得順理成章。

      3.鞏固新知、反饋回授

      教師活動:

      ①板書例1

      ②板書例2第一問

      ③介紹有關考古的拓展知識。

    高中數學說課稿 篇7

      函數的單調性

      今天我說課的題目是《函數的單調性》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、教學過程五方面逐一加以分析和說明。

      一、說教材

      1、教材的地位和作用

      本節內容選自北師大版高中數學必修1,第二章第3節。函數是高中數學的課程,它是描述事物運動變化的模型,而函數的單調性是函數的一大特征,它為我們之后的學習奠定重要基礎。

      2、學情分析

      本節課的學生是高一學生,他們在初中階段,通過一次函數、二次函數、反比例函數的學習已經對函數的增減性有了初步的感性認識。在高中階段,用符號語言刻畫圖形語言,用定量分析解釋定性結果,有利于培養學生的理性思維,為后續函數的學習作準備,也為利用倒數研究單調性的相關知識奠定了基礎。

      教學目標分析

      基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分:

      1.知識與技能(1)理解函數的單調性和單調函數的意義;

      (2)會判斷和證明簡單函數的單調性。

      2.過程與方法

      (1)培養從概念出發,進一步研究性質的意識及能力;

      (2)體會數形結合、分類討論的數學思想。

      3.情感態度與價值觀

      由合適的例子引發學生探求數學知識的欲望,突出學生的`主觀能動性,激發學生學習數學的興趣。

      三、教學重難點分析

      通過以上對教材和學生的分析以及教學目標,我將本節課的重難點

      重點:

      函數單調性的概念,判斷和證明簡單函數的單調性。

      難點:

      1.函數單調性概念的認知

      (1)自然語言到符號語言的轉化;

      (2)常量到變量的轉化。

      2.應用定義證明單調性的代數推理論證。

      四、教法與學法分析

      1、教法分析

      基于以上對教材、學情的分析以及新課標的教學理念,本節課我采用啟發式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數學在生活中的應用,啟發式教學和討論法發散學生思維,培養學生善于思考的能力。

      2、學法分析

      新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎。所以本節課我將引導學生通過合作交流、自主探索的方法理解函數的單調性及特征。

      五、教學過程

      為了更好的實現本課的三維目標,并突破重難點,我設計以下五個環節來進行我的教學。

      (一)知識導入

      溫故而知新,我將先從之前學習的知識引入,給出一些函數,比如y=x、y=-x、y=|x|,讓學生作出這些函數的圖像,然后讓學生討論這些函數圖像是上升的還是下降的,由此引入到我的新課。在這個過程中不僅可以檢查學生掌握基本初等函數圖像的情況,而且符合學生的認知結構,通過學生自主探究,從知識產生、發展的過程中構建新概念,有利于激發學生的思維和學習的積極主動性。

      (二)講授新課

      1.問題:分別做出函數y=x2,y=x+2的圖像,指出上面的函數圖象在哪個區間是上升的,在哪個區間是下降的?

      通過學生熟悉的圖像,及時引導學生觀察,函數圖像上A點的運動情況,引導學生能用自然語言描述出,隨著x增大時圖像變化規律。讓學生大膽的去說,老師逐步修正、完善學生的說法,最后給出正確答案。

      2.觀察函數y=x2隨自變量x變化的情況,設置啟發式問題:

      (1)在y軸的右側部分圖象具有什么特點?

      (2)如果在y軸右側部分取兩個點(x1,y1),(x2,y2),當x1

      (3)如何用數學符號語言來描述這個規律?

      教師補充:這時我們就說函數y=x2在(0,+∞)上是增函數。

      (4)反過來,如果y=f(x)在(0,+∞)上是增函數,我們能不能得到自變量與函數值的變化規律呢?

      類似地分析圖象在y軸的左側部分。

      通過對以上問題的分析,從正、反兩方面領會函數單調性。師生共同總結出單調增函數的定義,并解讀定義中的關鍵詞,如:區間內,任意,當x1

      仿照單調增函數定義,由學生說出單調減函數的定義。

      教師總結歸納單調性和單調區間的定義。注意強調:函數的單調性是函數在定義域某個區間上的局部性質,也就是說,一個函數在不同的區間上可以有不同的單調性。

      (我將給出函數y=x2,并畫出這個函數的圖像,讓學生觀察函數圖像的特點,讓他們描述函數圖像的增減性,慢慢得到函數單調性的概念。在這個過程中,學生把對圖像的感性認識轉化為了數學關系,這種從特殊到一般的學習過程有利于學生對概念的理解)

      (三)鞏固練習

      1練習1:說出函數f(x)=的單調區間,并指明在該區間上的單調性。x

      練習2:練習2:判斷下列說法是否正確

      ①定義在R上的函數f(x)滿足f(2)>f(1),則函數是R上的增函數。

      ②定義在R上的函數f(x)滿足f(2)>f(1),則函數是R上不是減函數。

      1③已知函數y=,因為f(-1)

      1我將給出一些具體的函數,如y=,f(x)=3x+2讓學生說出函數的單調區間,并指明在該區間x

      上的單調性。通過這種練習的方式,幫助學生鞏固對知識的掌握。

      (四)歸納總結

      我先讓學生進行小結,函數單調性定義,判斷函數單調性的方法(圖像、定義),然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的學習情況有一定的了解,為下一節課的教學過程做好準備。

      (五)布置作業

      必做題:習題2-3A組第2,4,5題。

      選做題:習題2-3B組第2題。

      新課程理念告訴我們,不同的人在數學上可以獲得不同的發展,因此要設計不同程度要求的習題。

      篇二:高一數學必修一說課稿

      二次函數的圖像說課稿

      今天我說課的題目是《二次函數的圖像》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計五方面逐一加以分析和說明。

      一、教材分析

      教材的地位和作用

      本節內容選自北師大版高中數學必修1,第二章第4.1節。二次函數的圖像在教材中起著承上啟下的作用。

      學情分析

      本節課的學生是高一學生,他們在初中的時候已經學習過有關內容,為本節課的學習打下了基礎,另一方面,二次函數解析式中的系數由常數轉變為參數,使學生對二次函數的圖像由感性認識上升到理性認識,能培養學生利用數形結合思想解決問題的能力。

      二、教學目標分析

      基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分:

      1.知識與技能

      理解二次函數中參數a,b,c,h,k對其圖像的影響;

      2.過程與方法

      通過體驗對二次函數圖像平移的研究方法,能遷移到其他函數圖像的研究。

      3.情感態度與價值觀

      通過本節的學習,進一步體會數形結合思想的作用,感受到數學中數與形的辯證統一。

      三、教學重難點分析

      通過以上對教材和學生的分析以及教學目標,我將本節課的重難點確定如下

      重點:

      二次函數圖像的平移變換規律及應用。

      難點:

      探索平移對函數解析式的影響及如何利用平移變換規律求函數解析式,并能把平移變換規律遷移到其他函數。

      四、教法與學法分析

      1、教法分析

      基于以上對教材、學情的分析以及新課改的要求,本節課我采用啟發式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數學在生活中的應用,啟發式教學和討論法發散學生思維,培養學生善于思考的能力。

      2、學法分析

      新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎。所以本節課我將引導學生通過合作交流、自主探索的方法進行學習。

      五、教學過程

      為了更好的實現本課的三維目標,并突破重難點,我將設計以下五個環節來進行我的教學。

      (1)知識導入

      溫故而知新,我將先從之前學習的知識引入,給出一些函數,比如y=x2、y=2x2,讓學生作出這些函數的圖像,然后讓學生比較這些函數圖像的相同點和不同點,由此引入我的新課。一方面讓學生總結復習已有知識,為后面的學習做好鋪墊,另一方面,使學生在自己熟悉的問題中首先獲得解題成功的快樂體驗。

      (2)講授新課

      例1:畫出函數y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像

      讓學生畫出他們的圖像并觀察函數圖像的特點,再讓學生與多媒體課件展示的`圖像進行對比,得出結論:若二次函數的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。

      前面的練習和例題,基本涵蓋了二次函數圖像平移變換的各種情況,啟發并引導了學生將實例的結論進行總結,得出y=x2到y=ax2,y=ax2到y=a(x+h)2+k,y=ax2到y=ax2+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a<0開口向下;h正左移,h負右移;k正上移,k負下移。在這個過程中,學生把對圖像的感性認識轉化為了數學關系,這種從特殊到一般的學習過程有利于學生對概念的理解,

      (3)鞏固練習

      我將組織學生進行練習,完成課本44頁1-3題。通過這種練習的方式,幫助學生鞏固和加深二次函數中參數對圖像的影響。

      (4)歸納總結

      我先讓學生進行小結,然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的學習情況有一定的了解,可以進行適當反思,為下一節課的教學過程做好準備。

      (5)布置作業

      略

    【愛國作文】相關文章:

    【經典】愛國的作文03-18

    愛國的作文【經典】03-17

    愛國的的作文06-08

    愛國作文06-04

    與愛國的作文06-07

    愛國的作文09-02

    愛國作文09-01

    《愛國》作文06-25

    (經典)愛國的作文03-15

    關于愛國的作文:愛國,我們的責任01-15

    <address id="ousso"></address>
    <form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
    1. 日日做夜狠狠爱欧美黑人