(經典)初中數學學習方法
在日常的學習、工作、生活中,大家都在努力,勤奮的學習,正確的學習方法,能夠讓我們學習事半功倍!想要找到正確的學習方法?下面是小編為大家整理的初中數學學習方法,希望對大家有所幫助。

初中數學學習方法1
數學學習方法指導的形式
1.講授式。它包括課程式和講座式。課程式是在初一新生入學的前幾周內安排幾次向學生介紹如何學習數學,提出數學學習常規要求的課。講座式可分專題進行,可每月搞一至二次,如介紹“怎樣聽課”、“如何學習概念”、“解題思維訓練”等。
2.交流式。讓學生相互交流,介紹各自的學習方法。可請本班、本年級或高年級的'學生介紹數學學習方法、體會、經驗。這種方式學生容易接受,氣氛活躍,不求大而全,只求有一得,使交流真正起到相互學習促進的作用。
3.輔導式。主要是針對個別學生的指導和咨詢。任何一種學習方法都不是人人都適合的,這時就應該深入了解學生學習基礎,研究學生認識水平的差異,對不同學生的學習方法作不同的指導或咨詢。尤其是對后進生更應特別關注。許多后進生由于沒有一個良好的學習習慣和學習方法,一般指導對他們作用甚微,因此必須對他們采取個別輔導,既輔導知識也輔導學法。因材施教,幫助每一個學生真正地去學習,真正地會學習,真正地學習好,這是面向全體學生,全面提高學生素質,全面提高教學質量的關鍵。
數學學習方法的指導是長期艱巨的任務,初一年級是中學的起始階段,抓好學法指導對今后的學習會起到至關重要的作用。
初中數學學習方法2
一、初中生數學學習方法的現狀與分析
通過近三年的課堂教學實踐,初中生數學學習的基本方法可歸結為:讀、聽、思、說、記、寫、糾、用,并存在一定的缺陷和不足。主要表現在:
1.諸多學生不會閱讀數學課本內容,總以為閱讀課本就是看結論,呆讀硬背,不僅沒讀懂讀透,而且應變能力和實際應用能力都較差,嚴重制約了自學能力的發展。
2.學生不能充分認識到老師講課的重要作用,聽課時抓不著重點,導致顧此失彼,精力分散,聽課效率下降,效果極其底下。
3.學生思考問題常常受思維定勢的干擾和影響,不善于分析轉化和進一步思考,其思路狹窄、滯后,甚至受阻,挫傷其學習的積極性,不利于他們的學習。
4.口頭表達能力差。主要表現在解題時會卻無法表達。回答老師提問時,口頭表達的內容不精煉,不生動,欠準確,或答非所問。
5.識記知識多是機械記憶,理解記憶少,滿足于記住結論,而不立足于去理解、概括、聯想,導致認知網絡不能完整建立。
6.書寫格式混亂,條理不清楚,作圖不規范,缺乏應有的嚴謹性和規范性。尤其是幾何問題更為突出。
7.學生在作業或測試后,對出現的錯誤,不能及時糾正,找不出錯誤的原因及矯正的方法。
8.由于學生對知識的記憶是機械的,重知識結論,輕知識發生的過程及來源,導致不能用所學知識去解決實際問題,應用能力差。
二、指導學生數學學習學法的.對策
針對上述存在的諸多問題,作為教師又如何去指導學生的學習呢?本人認為應從以下幾個方面去培養學生的“讀、聽、思、說、記、寫、糾、用”的能力。
1.重課本內容讀的指導
南宋朱熹說過:“幼時讀書,背至滾瓜爛熟,不甚了了,成年逐漸感悟,回思意味深長。”這表明一個人學習,讀和悟,讀是第一位的。因此要認真指導學生閱讀數學課本,從課本的各個方面去去深入理解內容。一是讀標題,要求學生細細體會標題,能提綱挈領地抓住教材的主要內容;二是讀例題,在預習時應要求學生帶著問題讀例題,并初步理解解題方法;三是讀插圖,它們可使學生更形象、具體、準確地理解文字的內容;四是讀算式,按算式各部分的原理讀,按算式所表示的意義讀,這樣可以弄清算式的概念和意義;五是讀結語,要求學生對結語逐字逐句地理解分析,以便準確地把握。
同時讀書時要抓好三點:一是粗讀,即邊讀邊圈、點、勾、畫,大體弄懂教材內容,對理解有困難的地方作記號;二是精讀,即在教師講解的基礎上細嚼課文,把握重要的數學概念、公式、法則、思想及方法;三是研讀,即當每一章節內容學完后,整理學過的知識,弄清體系,小結歸納要點,形成知識網絡。
2.抓教學過程聽的指導
數學教學中指導學生聽課,先從培養學習興趣入手來集中學生的注意力,使其激活原有的認識結構,打開“聽門”,專心聽講。其次,要指導學生會聽課,主要從以下幾方面去努力:一是注意聽教師每一節課開始所講的教學內容、重點和學習要求;二是注意聽教師在講解例題時關鍵讀粉的提示和處理;三是注意聽教師對概念要點的剖析和概念體系的串聯;四是注意聽教師每一節課的小結和對某些較難習題及例題的提示等。
3.注重激啟學生說的指導
在數學教學中。怎樣激發啟發學生說呢?第一,啟發學生說思路,說思維過程。課堂上要讓每個學生都有說自己想法的機會,可以讓學生根據某一個問題,獨自小聲說,同桌之間練習說,四人小組相互說,教師學生共同說……等等。通過說,培養學生語言的條理性和思維的邏輯性。第二,引導學生用簡明、準確、規范的數學語言,完整地回答問題,在引導學生觀察、分析、推理、判斷后,啟發學生用自己的話總結,概括出定義、法則或公式,使感性認識上升到理性認識。
4.培養學生寫的指導
數學教學中,教師要指導學生學會做學習筆記;指導學生將數學語言轉化為數學符號;指導熟練掌握數學常用書寫格式,指導他們學會作圖,培養學生的直觀思維能力。
5.嚴格學生糾錯的指導
(1)設置“陷阱”,誘使學生得出錯誤
有的放矢地選一些頗具迷惑性的題目,在易錯的節骨眼上設“陷阱”,先誘使學生陷入歧途,制造思維沖突,再引導學生在自查自理中掙扎出來,達到學生深刻理解概念和知識的目的。
(2)適時恰當引入錯例,引導學生獨立評析錯誤
對于例題的錯誤解法由學生獨立地對錯誤進行評析和判斷,引導學生獨立尋找錯誤加以分析,讓其自己進行矯正。
(3)強調學生用知識意識的指導
所謂數學應用就是人們在自己工作、學習和生活中,碰到各種各樣的實際問題時,會想到用數學方法解決它。如何指導及培養呢?一是培養學生觀察生活中的數量,記住一些常用數量;二是注意用實際問題引發數學新知識,并及時用新知識解決提出的問題;三是要告訴學生,數學圖形是思考的工具。數形結合,培養學生的用圖能力和直觀思維能力;四是安排一定的室外數學實習,讓學生去討論實際的數學問題;五是收集一些報刊或書籍,讓學生體會到數學應用的廣泛性;六是鼓勵學生發現和修改課本或學習資料中不合實際的問題。
總之,學法指導必須與新課程實施同步,應從初一年級抓起,循序漸進,持之以恒,協調發展。教師應善于研究學生學法的現狀并加以分析,研究數學方法與學生指導策略,指導有序,對癥下藥,因人而異,因材施教,讓學生知其然,也知其所以然,形成自學能力,提高學習效率。只有這樣才能有助學生由“學會”向“會學”轉化,真正把素質教育落到實處,使新課程的實施落到實處。
初中數學學習方法3
教學活動是教師和學生同時進行的“教”與“學”活動的辯證統一。十幾年的教學實踐,我體會到,教師自身素質,這僅僅是教學質量的一個方面,更重要的是充分發揮學生的主觀能動性,從“教會”向“學會”到“會學”的方向發展,因此,學生的,成了教師提高學生素質的根本性一環。通過認真學習了羅琳老師的《初中生數學》,再結合平時教學實踐,對如何指導學生學習要“得法”提出三點看法。
(一)教師要有人格魅力,要有良好的師生關系,“親其師而信其道”。如果學生不給“面子”,有再好的學習方法也白搭。
(二)教師必須把指導落實到位,“授之以魚,不如授之以漁”。結合教學實際,畫龍點睛地對學生點撥學習方法。在傳授知識訓練技能時,教師要引導學生加以總結,使其逐步系統完善,并能找出規律性的東西。在引導學生總結時,進行的理性反思,強化并進行遷移應用,在訓練中鞏固掌握學法。最后指導學生課前預習和形成自學能力,這樣就將學法指導的重要目標——教會學生學習落到實處。
(三)在對學生進行學法指導的同時,注重對學生數學學習能力的培養,使初中學生具備一定的學習能力,這樣就具有從事繼續學習的基本功,所謂“今天的教為了明天的不教”。如培養學生的觀察力,總是要先給學生觀察事物的一些方法,力求做到細致、全面。能夠通過觀察發現事物的`差異,從而抓住事物的本質、屬性和特點。在這一系列的訓練活動中,學生的觀察力才會得到培養和逐步提高。因此,在對學生進行“學法”指導的同時,努力提高學生的推理能力、抽象能力、想象力和創造力,就顯得非常重要。
以上三點是個人在學習時的體會,望專家多指導,謝謝!
初中數學學習方法4
有理數概念的建立,有理數性質的介紹,有理數運算法則的規定,這一切都為同學們進一步學習代數做了必要的準備。那么接下來的初中數學學習方法請同學們認真記憶了。
《初一代數》(上冊)的數學內容從整體上看主要是解決從算術進展到代數這個重要的基本課題。我們認為主要體現在以下兩個方面。一方面是“數集的擴充”,即引進負數,把原有的算術數集合擴充到有理數集合;另一方面是解代數方程的原理和方法,即從用字母表示數,到用“列方程”取代“列算式”解應用問題。
數集的每一次擴充都是解決實際問題和解決數學自身矛盾的需要。同學們在學習有理數一章時,希望大家要有意識地培養自己邏輯推理能力,使自己會觀察、比較、分析、綜合、抽象和概括,會用歸納和類比的方法進行推理。另外要特別重視提高運算能力,有過硬的運算基本功。為此,不僅能根據法則、運算規律、公式等正確地進行運算,而且理解運算的算理,能夠根據題目條件,使運算“合理、簡捷、準確”。為了解決用算術方法解應用題的局限性,人們想出用字母表示未知數,把問題中的相等關系平鋪直敘地用代數方程式表達出來。由于表示未知數的字母也是數,因此,它們也可以按照數的運算的通性、通法進行運算,從而求得未知數所應有的`值。同學們要充分注意這一“歷史性”的突破。為此,不僅要熟練掌握含數字的算術的變形和計算,更要切實掌握好含字母的代數式(目前主要是整式)的變形和計算,解方程的基本方法和步驟,這一切都是為列方程解應用題而展開的。通過列方程解應用題的學習,體會如何把實際問題抽象成數學問題,用方程思想處理數學問題,形成用數學的意識,培養我們自己分析問題和解決問題的能力。
初中數學學習方法5
1、課前認真預習。預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十。帶著預習中不明白的問題去聽老師講課,來解答這類的問題.預習還可以使聽課的整體效率提高。具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續15-20分鐘。在時間允許的情況下,還可以將練習冊做完。
2、讓數學課學與練結合。在數學課上,光聽是沒用的。當老師讓同學去黑板上演算時,自己也要在草稿紙上練。如果遇到不懂的難題,一定要提出來,不能不求甚解。否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細節問題,否則“千里之堤,毀于蟻穴”。
3、課后及時復習。寫完作業后對當天老師講的內容進行梳理,可以適當地做25分鐘左右的課外題。可以根據自己的需要選擇適合自己的課外書.其課外題內容大概就是今天上的`課。
4、單元測驗是為了檢測近期的學習情況。其實分數代表的是你的過去,關鍵的是對于每次考試的總結和吸取教訓,是為了讓你在期中、期末考得更好。老師經常會在沒通知的情況下進行考試,所以要及時做到“課后復習”。
初中數學學習方法6
數學是一門思維性、邏輯性、連貫性很強的學科,它是符號、數字、推理與運算、圖形的結合,學生在學習中注意力往往容易分散,教師如果不注意對學生興趣的培養,則極容易使學生覺得枯燥無味,產生厭學情緒,興趣是最好的老師,是行為的原動力,托爾斯泰曾說:成功的教學需要的不是強制,而是激發學生的興趣。“一個人對學習有了興趣,就能全身心的投入學習中,一定要注意采用多種教學手段去培養和激發學生的興趣”。其中學習方法的掌握,也能促進學生學習的興趣。古人云“學而時習之”“溫故而知新”對今天的學生來說仍是很有用的學習方法,復習時,歸納總結我認為是其中重點之一,掌握歸納的內容是關鍵,及時的歸納能使學習效果顯著,事半功倍。
歸納的內容包括以下幾種:
一、歸納知識
尤其是數學知識前后聯系緊密,且知識呈現一種上升趨勢,若能歸納好,有關知識就能熟練應用。例如:函數內容,八年級內容中,先講函數定義,然后學習正比例函數,一次函數,進而研究函數的圖像與性質,點坐標與解析式的關系,確定解析式的方法,為九年級學習的反比例函數,二次函數提供了研究的方法。
二、歸納解題方法
解題方法雖然很多,但總有一些常用方法,例如:證明“線段相等”是很常見的題型,常見方法有:中點定義,等量代換,等量加減,全等三角形對應邊相等,等角對等邊,軸對稱性質,中心對稱性質,平行四邊形的對邊相等,矩形對角線相等,等腰梯形對角線相等,角平分線性質,線段垂直平分線性質等,然后總結常見方法有:全等三角形對應邊相等,平行四邊形對邊相等,矩形對角線相等,等角對等邊,線段垂直平分線性質等,這樣做題中就會比較容易確定解題方法。
三、歸納幾何內容分析問題的方法
數學問題的解決,分析問題最關鍵,綜合法最常用,另外還有根據經驗猜測法,例如:“五角星形狀圖形五個內角之和是180度”,則從三角形內角和是180度考慮,把五個內角之和轉化為某一個三角形的內角和。
四、歸納易錯易混知識及考點
學生對于知識的掌握局限于當堂學會,對于作業中出錯的`問題不重視,以致于在考試中錯誤的問題仍得不到修正,所以應該讓學生學會歸納易錯題型及知識點。例如在學習一元一次方程解法中,對于每一步需要注意的問題都要進行歸納,對于去分母這一步要注意每一項都乘以公分母,一定不要漏項,尤其是無分母項一定不要漏乘;另外分子要當做一個整體來對待,必要時要對分子加括號,尤其分子是一個多項式時要加括號,對于去括號這一步要注意符號問題,如果括號前是負號一定要各項都改變符號,不要漏掉后面的項,對于移項這一步要注意,以等號為界限,從等號一邊移到另一邊才需要變號,只在等號一邊交換位置而不過等號,一定不要變號,合并同類項這一步要注意系數相加減中的減法,減去一個數等于加上這個數的相反數,一定要按這個要求做,系數化為一這一步要注意在結果中系數做的是分母,還要注意符號問題一定不要掉符號。
每章節的考點題型也必需要歸納,例如:分式這一章考點有分式的性質,分式有意義的條件,分式的值為零的條件,分式的加減乘除混合運算,分式的化簡求值等考點,另外分式的化簡求值是中考必考題型。
新課標要求下的學生不但要學習,而且要學會學習,學會合作,學會交流,學會創新,學會發展,更要為終身學習儲備學習方法。
所以在教學中要注意培養學生的學習方法,尤其是歸納總結要培養。作為教師我們的任務不僅要很好的傳播和學習已經形成了知識,而且要注意培養學生獨立觀察,盡量讓學生動腦思考,學生動口表述,盡量讓學生發現問題,歸納總結問題,一定要體現教師主導作用,學生主體地位。
初中數學學習方法7
(1)如何將文字語言轉化為符號語言;
(2)如何將推理思考的解題過程用文字書寫表達出來;
(3)正確地由條件畫出圖形。
2.課后復習鞏固方法:
(1)適當多做題,養成良好的解題習慣;
(2)細心地挖掘概念和公式;
(3)總結相似的類型題目;
(4)收集典型錯誤和不會做的題目。
3.培養反思的習慣:
(1)講課內容及所學的數學思想和方法(2)課上掌握情況
(3)沒掌握的內容及原因
(4)做作業情況
(5)一天中學習數學的時間
(6)對自己說幾句話
4.小結或總結的方法:
一看、二列、三做、四歸、五編。
指導:中學生學習方法七步走
在學習過程中,掌握科學的學習方法,是提高學習成績的重要條件。以下我分別從預習、上課、作業、復習、課外學習、實驗課等七個方面,談一下學習方法的常規問題。
一、預習。預習一般是指在老師講課以前,自己先獨立地閱讀新課內容,做到初步理解,做好上課的準備。所以預習就是自學。
1.通覽教材,初步理解教材的基本內容和思路。
2.預習時如發現與新課相聯系的舊知識掌握得不好,則查閱和補習舊知識,給學習新知識打好牢固的基礎。
3.在閱讀新教材過程中,要注意發現自己難以掌握和理解的地方,以便在聽課時特別注意。
4.做好預習筆記。預習的結果要認真記在預習筆記上,預習筆記一般應記載教材的主要內容、自己沒有弄懂需要在聽課過程中著重解決的問題、所查閱的舊知識等。
中考生如何選擇和填報志愿
中考生如何選擇和填報志愿 學習方法
今年高級中等學校招生錄取方式為提前招生錄取、“招優”錄取和統一招生錄取,且全部采取遠程網上錄取方式進行。
考生首先應根據自己的實際情況,慎重選擇參加哪種招生錄取方式。考生如參加提前招生并被錄取,統一招生志愿將視為自動放棄。考生參加統一招生,最多可選報八個志愿學校,每個志愿學校可選報兩個專業。
被確定為“優秀生”的考生填報志愿時需將“招優”學校普通班專業填報在第一志愿第一專業欄內且不得參加提前招生錄取。被“招優”學校錄取的考生要承認錄取結果,其所填報的其它志愿自動作廢;未被錄取的優秀生第一志愿作廢,從第二志愿開始參加統一招生錄取。
考生填報志愿要兼顧社會需求、個人興趣愛好和各方面條件(如學習成績、體檢情況、動手動腦能力、居住位置等)
十大學習好習慣讓你成為“尖子生”
【摘要】尖子生”是每個家長對孩子的希望,那么什么樣的學習習慣最容易讓孩子成為學習上的尖子生呢?據調查顯示,所有的尖子生中無論是在學習、預習、復習中,都至少有兩到三個良好的學習習慣。下面我們總結如下十種學習尖子生的學習好習慣。
1、認真預習的習慣 很多同學只重視課堂上認真聽講,課后完成作業,而忽視課前預習,有的同學根本沒有預習,其中最主要的原因不是因為沒有時間,而是因為沒有認識到期預習的重要性。那么預習有什么樣好處呢?課前預習也是學習的重要環節,預習可以掃除課堂學習的知識障礙,提高聽課效果;還能夠復習、鞏固已學的知識,最重要的是能發展學生的自學能力,減少對老師的依賴,增強獨立性;預習可以加強記課堂筆記的針對性,改變學習的被動局面。在預習時,要做到:了解教材的大概內容與前面已學的知識框架;找出本章或本課內容與前面已學知識的聯系,找出所需的舊知識,并補習此時的知識;找出本課的難點和重點(作為聽課的重點);對重點問題和自己不理解的問題,用筆劃或記入預習筆記。
2、專心聽課的習慣 如果課前沒有一個“必須當堂掌握”的決心,會直接影響到聽講的效果,如果在每節課前,學生都能自覺要求自己“必須當堂掌握”,那么上課的效率一定會大大提高。實際上,有相當多的學生認為,上課聽不懂沒有關系,反正有書,課下可以看書。抱有這種想法的學生,聽課時往往不求甚解,或者稍遇聽課障礙,就不想聽了,結果浪費了上課的寶貴時間,增加了課下的學習負擔,這大概正是一部分學生學習負擔的重要原因。 集中注意力聽課是非常重要的,心理學告訴我們注意是心理活動對一定對象的指向和集中,它是心理過程的動力特征。注意的指向性,可使人的心理活動在每一瞬間都能有選擇的反映事物;注意的集中性,可使事物在人腦中獲得清晰和深刻的反映。正因為注意擁有指向性和集中性兩個重要的特征,所以,注意具有選擇、保持以及對活動的調節和監督的'功能。思路就是思考問題的線索。上課聽講一定要理清思路。要把老師在講課時運用的思維形式、思維規律和思維方法理解清楚。目的是向老師學習如何科學地思考問題,以便使自己思維能力的發展建立在科學的基礎上,使知識的領會進入更高級的境界。分心是注意的反面,分心不是沒有注意,只是沒有把注意指向和集中在當前的學習任務上,心不在焉,必定“視而不見、聽而不聞、食而不知其味”。
3、及時復習的習慣 及時復習的優點在于可加深和鞏固對學習內容的理解,防止通常在學習后發生的急速遺忘。根據遺忘曲線,識記后的兩三天,遺忘速度最快,然后逐漸緩慢下來。因此,對剛學過的知識,應及時復習。隨著記憶鞏固程度的提高,復習次數可以逐漸減少,間隔的時間可以逐漸加長。要及時“趁熱打鐵”,學過即習,方為及時。忌在學習之后很久才去復習。這樣,所學知識會遺忘殆盡,就等于重新學習。俗話說“溫故而知新”,就是說,復習過去的知識能得到很多新的收獲。這個“新”主要指的是知識達到了系統化的水平,達到了融會貫通的新水平。首先,知識的系統化,是指對知識的掌握達到了一個更高的境界,也就是從整體、全局或聯系中去掌握具體的概念和原理,使所學的概念和原理回到知識系統中的應用位置上去。其次,知識的系統化,能把多而雜的知識變得少而精,從而完成書本知識由“厚”到“薄”的轉化過程。系統化的知識,容量大,既好記又好用。最后,系統化的知識有利于記憶。道理很簡單,孤立的事物容易忘記,而聯系著的事物就不容易忘記。想搞好知識的系統化,一要靠平時把概念和原理學好,為建造“知識大廈”備好料;二要肯于堅持艱苦的思考。思想懶漢, 逃避艱苦思考的人,是不可能真正掌握好知識的;三要學會科學地思維。
4、獨立完成作業的習慣 明確做作業是為了及時檢查學習的效果,經過預習、上課、課后復習,知識究竟有沒有領會,有沒有記住,記到什么程度,知識能否應用,應用的能力有多強,這些學習效果問題,單憑自我感受是不準確的。真正懂沒懂,記住沒記住,會不會應用,要在做作業時通過對知識的應用才能得到及時的檢驗。做作業可以加深對知識的理解和記憶;實際上,不少學生正是通過做作業,把容易混淆的概念區別開來,對事物之間的關系了解得更清楚,公式的變換更靈活。可以說做作業促進了知識的“消化”過程,使知識的掌握進入到應用的高級階段。做作業可以提高思維能力;面對作業中出現的問題,就會引起積極的思考,在分析和解決問題的過程中,不僅使新學的知識得到了應用,面且得到了“思維的鍛煉”,使思維能力在解答作業問題的過程中,迅速得到提高。做作業可以為復習積累資料;作業題一般都是經過精選的,有很強的代表性、典型性。因此就是做過的習題也不應一扔了事,而應當定期進行分類整理,作為復習時的參考資料。
5、練后反思的習慣 在讀書和學習過程中,尤其是復習備考過程中,每個同學都進行過強度較大的練習,但做完題目并非大功告成,重要的在于將知識引申、擴展、深化,因此,反思是解題之后的重要環節。一般說來,習題做完之后,要從五個層次反思:
(1)、怎樣做出來的?想解題采用的方法;
(2)、為什么這樣做?想解題依據的原理;
(3)、為什么想到這種方法?想解題的思路;
(4)、有無其它方法?哪種方法更好?想多種途徑,培養求異思維;
(5)、能否變通一下而變成另一習題?想一題多變,促使思維發散。當然,如果發生錯解,更應進行反思:錯解根源是什么?解答同類試題應注意哪些事項?如何克服常犯錯誤?“吃一塹,長一智”,不斷完善自己。應當培養的優良習慣還有許多,諸如有疑必問的習慣,有錯必改的習慣,動手實驗習慣,查找工具書的習慣,健康上網、積極探究的習慣等等。從課堂學習的過程看,還有認真預習、專心聽課、及時復習、獨立完成作業、積極應考等好習慣。
合理利用時間 多總結多歸納
轉眼間,我們就進入了中考沖刺階段,當倒計時數字由三位數轉為兩位數時,也是我們最為忙碌、最為緊張的時刻來臨之際,針對于初三的學生,如何在時間緊張的時候做好沖刺?如何能夠利用有效的時間實現自己的目標?
首先,調整好自己的心態,一個好的心態將是我們成功的基石。
越是緊張的時刻,我們越要臨危不亂,我們越要保持一顆平常的心,做好自己的規劃,調整好自己的學習步伐和學習節奏,只有這樣,我們才能不被外界所打擾,才能凈下心來用心的復習。相反,此時如果出現“浮躁”的心態,如感覺自己什么問題都懂、感覺老師講的太簡單、感覺自己沒有不會做的試題……,這樣很容易出現后期學習乏力,并且讓自己喪失更多的學習機會,最終慘敗中考考場,這樣的例子每一屆比比皆是。因此,我們需要在此時保持平和的心態,不驕不躁,繼續努力學習,鉆研問題,把每一個基礎知識點弄扎實,把每一類型題目弄扎實,踏實的迎接中考的到來!
其次,初三各科總體多回顧,多總結,多歸納。
初三年級春季,一般學校進度都是專題復習,學習狀態基本都是“發試卷、做試卷”。那么越是這個時候我們越要做好回顧,做好總結,做好歸納。當我們學完一個專題時,針對于這一個專題里好的例題我們需要經常去回顧,去復習,讓自己不遺忘,而且針對于本專題非常好的例題一定要單獨抄寫出來,時常去復習,當我們在初三下學期不斷的復習時,我們會發現我們能夠針對于同一道例題找出多種方法,更有利的是我們能夠理解的更加深刻,從而真正意義上把某一道試題掌握。
第三,不同科目做好不同的規劃
初三下學期,我們一定要努力讓自己比較薄弱的科目進步,針對于中考五科盡量不要偏科,此時我們可以多做做歷年一模考試試題,通過做套題來讓自己熟悉考試模式與結構,讓自己隨時被包圍在中考考試環境中。
做計算題也要認真審題
做計算題也要認真審題 來源:網絡收集作者:木頭
解答應用題的時候,我們都非常重視審題這個環節,因為不認真審題,就不能正確地理解題意、分析數量關系,解題也就無從入手了。而在做計算題的時候,往往認為數目和運算符號都是明擺著的,不審題也照樣可以計算。其實,做計算題的時候同樣也是需要認真審題的。通過審題,可以看清數目的特點,運算之間的關系,既能確定運算順序,又能進一步思考:是否可以應用運算定律或運算性質,使計算方法更加合理、靈活,計算更加簡便呢?審題,可以培養我們的觀察能力,發展我們的思維能力,提高我們的計算能力。 現在,讓我們通過計算下面的題,進一步認識審題是多么的重要啊!()÷5×有的同學說這道題的計算結果是,你同意嗎?先讓我們一起來審題:這是一道含小括號的三步計算式題,按運算順序的規定,應該先算小括號里的,再算小括號外的。小括號里+,和是,小括號外的乘法與除法屬同一級運算,計算時應該從左往右依次進行。正確的計算過程是:(+)÷5×=÷5×=××=。計算的最后結果應該是,而不是。從表面上看,造成錯誤的原因是計算時違反了運算順序,實際上呢,是有的同學被5×正好可以約分這一組合形式吸引所致。如果我們在計算之前能夠認真審題的話,那么,這樣的錯誤是完全可以避免的,你說對嗎?又如15×78+45×74,這是一道“求兩積之和”的三步式題,粗看,數目和和運算之間沒有明顯的特點,按運算順序應該先分別計算出15×78、45×74的積,然后將兩個積相加,它們的和便是計算的最后結果。如果我們在審題時,充分利用自己頭腦中的數字知識,就能看到數目間的倍數關系,并能想到將原來的算式轉化成為符合應用乘法分配律進行簡算的可能性。依據“兩個數相乘,一個因數擴大幾倍,另一個因數縮小同樣的倍數,積不變”的性質,將15擴大3倍為45,78縮小3倍為26,使15×78轉化成為45×26。計算過程是:15×78+45×74=(15×3)×(78÷3)+45×74=45×26+45×74=45×(26+74)=45×100=4500。由此可見,認真審題,有時可以將題目進行合理地“改造”,使計算簡便。
認真審題,既是一個良好的學習習慣,也是一項重要的學習能力。習慣和能力都需要有意識地去培養,讓我們在做計算題的過程中,自覺地增強審題意識,鍛煉審題能力吧!
“分組自學輔導”法
四川省巴中縣石門鄉中心小學補世煒從一九七八年開始。經過九年反復試驗探究,借鑒復式班教學的特點,在教學上摸索出分組“自學輔導”教學方法。農村小學、特別是山區小學,生源分散,學生的社會接觸面小,家庭經濟發展不平衡,教育方式還處在落后的階段。由于種種原因,導致一個教學班學生的知識基礎、個性特點、智力水平存在著相當大的差異,給教學工作帶來了困難。那么如何提高農村小學的教學質量呢?“分組自學輔導”教學方法是在“自學輔導法”、“研究性學習法”、“引導發現法”、“嘗試教學法”等多種教學方法的基礎上總結出一種適合分組教學特定條件的教學方法。它運用控制論、系統論、信息論的基本原理,科學地處理了信息的交換、傳輸和反饋,是按照兒童的心理特點和認識規律來設計教學程序的。“分組自學輔導”教學方法遵循“因材施教”的原則,立中于中等生,重視后進生的轉化和優等生的發展。不僅注重教學學生掌握知識,更注重教學生獲取知識的方法;不僅注重學生能力的培養,而且注重學生智力的開發。
分組自學輔導首先要解決分組的問題。每學期開學初,都要對學生進行細致調查、分析、比較,按思想品德、基礎知識、智力因素三個方面的差異把學生分成優等生(A)組,中等生(B)組、后進生(C)組等三個大組,登記造冊。各大組又分為幾個學習小組,每小組以四人為宜。然后采取自報、公議、指導相結合的方法,確定本學期每個學生提高成績的具體目標。在分組過程中,教師要特別注意做好學生的思想工作,尤其是對后進生組的學生講明分組的目的,使他們消除顧慮,打消自卑感,立志早日趕上中等生或優等生的水平。座住編排要便于分組輔導和學生間的相互討論,后進組學生的座位應排在教師最易顧及的位置。課堂教學程序第一步,教師把握本節內容與要求,找準知識的生長點。或設置疑問,或創設懸念,造成知識沖突,使學生形成最佳心理狀態。第二步,教師提出自學要點,引導學生獨立思考和理解。粗讀、細讀教材,邊讀這批劃、注記、寫提要等。教師巡回輔導,啟發思考,留心觀察,抓住時機,適時點撥。重點放在對后進組的輔導。
初中數學學習方法8
誤區一:“一聽就懂,一做就錯或不會”
在數學學習過程中,常常出現這種現象,這也是在課余經常能夠聽到的部分同學的反饋信息。為什么學生在課堂上聽懂了,課后解題時一旦遇到稍有變化的新題型時卻無所適從呢?這說明上課聽懂還停留在“聽懂”這一初級層次上,而能達到舉一反三應用知識解決問題卻是對學生對數學知識在頭腦中加工重組構建的更高層次的要求,也是每位同學必須達到的要求。
教師所舉例題是范例同時也是思維訓練的手段,作為學生不應該只學會題中的知識,更要學會領悟出解題思路與技巧,以及蘊藏其中的數學思想方法。
針對這種情況,應作出如下的策略調整,步驟如下:
第一步:合上書,自己重做一遍例題,做題過程中,找出自己遇到的思維受阻的地方;
第二步:對照課本解法,尋找自身思維漏洞,問自己:為什么課本這樣解決問題?我的解法不足之處在哪里?
第三步:進一步思考:本題的條件、結論換一下還成立嗎?本題還有其它的解法與結論嗎?
第四步:總結解題規律,提醒自己容易出錯的地方,作出重點提醒標記。
誤區二:“數學多做題就能提高成績,數學概念不重要”
有不少的.學生認為數學多做題就能學好,可結果卻往往事與愿違,這是為什么呢?很多的原因在于概念不清。數學概念是學習數學的基礎。如果概念不清,往往導致認識、理解偏差,解題出錯。
例如,對正、負數概念的理解。在學生剛學習正負數時,教材曾把算術數前帶有正號和符號的數分別叫做正數和負數。隨著學習的逐步深入,特別是在學習用字母表示數和有理數的運算以后,再這樣形式地理解正負數就非常不夠了。這時應當把負數理解為小于零的數。如果缺乏對概念的這些更深層次的理解,就將導致出現“-a是負數”,“a>-a”,“a+b≥a”等一系列錯誤。
這是因為概念不清造成失誤的典型例子。除此之外,還有很多。由此可見,概念不清,做再多的題只能起到“事倍功半”的效果,想提高成績談何容易!
調整策略:
第一步:記住概念,理解概念;
第二步:“咬文嚼字”,抓住關鍵詞,吃透概念;
第三步:聯系前后相關知識,深入理解概念;
第四步:對照題目條件,聯想、對比相應概念;
第五步:積累經驗,精選題目,注意類型,勤于總結。
誤區三:“多做題目總能遇到考題”
有這種想法的人總會感到失望。每一份綜合試卷,出卷人總要避免 考舊題、陳題,盡量從新的角度,新的層面上設計問題。但是考查的知識點和數學思想方法是恒久不變的。所以多做題,不會碰巧和考題零距離親密接觸,反而會把自己陷入無邊無際的題海之中。解決問題的辦法是從知識點和思想方法的角度分別對所解題目進行歸類,總結解題經驗的同時,確認自己是否真正掌握并確認復習的重點。
調整策略:
一讓自己花點時間整理最近解題的題型與思路;
二要思考:這道題和以前的某一題差不多嗎?此題的知識點我是否熟悉了?最近有哪幾題的圖形相近?能否歸類?
三要善于歸類。不僅總結知識,更要總結方法與技巧,只有這樣,才能觸類旁通、事半功倍。
如:
在“無理方程”的教學中,歸納出解法:
①去分母法;
②換元法;
對于換元法給予歸納出兩種常見的題型:
A平方型;
B倒數型。
又如在“三線八角”教學中,由于圖形較于復雜,學生不易找出同位角、內錯角、同旁內角,可以總結出同位角找字母“F”,內錯角找字母“N”,同旁內角找字母“L”。只有不斷的總結,才能有創新和發展。
誤區四:“對于數學公式,記住并會套用就行”
這種想法與做法在解題過程中并非完全不奏效,從而讓這樣做的同學更加堅定了信念。然而這種做法也并非完全奏效,也有“失靈”的時候。后者多出現于以下幾種情況:
一是所給題目條件有限制,不能完全適用于公式;
二是公式本身也有限制條件,并非適用所有題目的求解。
如:解方程:(a+1)x2-2x+5=0。有的同學看完題目就開始套用“一元二次方程的求根公式”。事實上,本題能否套用求根公式主要取決于方程本身是否一定是一元二次方程。因此應就“a+1”是否為0作出討論,分別就兩種情況求解。
調整策略:
一是不僅記住公式,更要記住公式的適用條件與范圍;
二是對照公式,仔細審題,看清哪些適用,哪些需另做討論。
誤區五:“多做難題、偏題、怪題,就能提高成績”
學習過程中經常遇到這樣的學生,簡單的題目不屑一做,總喜歡鉆研一些綜合性強的、靈活度高的“難題”,以為這樣就能學好數學;而喜歡做“偏題”、“怪題”的同學想法也很簡單,以為這樣就能拉開與其他學生的距離,提升自己學習成績。可結果卻總愛捉弄這些獨辟蹊徑的學生,給他們當頭澆上一瓢冷水,讓他們不由對自己的學習方法產生懷疑,甚至灰心失望。分析原因不難發現:中考試卷難題少,偏題、怪題很難遇到。而影響成績的主要因素不是這些“獨特”題目的因素。
調整策略:以基礎題目為主,注意總結中考試題出題類型與規律,適當做少量幾道有針對性的綜合靈活題目。
初中數學學習方法9
數學是一門基礎學科,對于我們的廣大中學生來說,數學水平的高低,直接影響到物理、化學等學科的學習成績,數學的重要地位由此可見。學數學要抱著濃厚的興趣去學習,積極展開思維的翅膀,主動地參與教育全過程,充分發揮自己的主觀能動性,愉快有效地數學。
概念是數學學科的基石,學習概念(包括定理、性質)不僅要知其然,還要知其所以然,許多同學只注重記概念,而忽視了對其背景的理解,這樣是學不好數學的,對于每個定義、定理,我們必須在牢記其內容的基礎上知道它是怎樣得來的,又是運用到何處的,只有這樣,才能更好地運用它來解決問題。
多看一些例題
細心的朋友就會發現,我們老師在講解基礎內容之后,總是給我們補充一些課外的例、習題,這是大有裨益的,我們學的概念、定理,一般較抽象,要把它們具體化,就需要把它們運用在題目中,由于我們剛接觸到這些知識,運用起來還不夠熟練,這時,例題就幫了我們大忙,我們可以在看例題的過程中,將頭腦中已有的概念具體化,使對知識的理解更深刻,更透徹,由于老師補充的例題十分有限,所以我們還應自己找一些來看,看例題,還要注意以下幾點:
1、不能只看皮毛,不看內涵。
我們在看例題,就是要真正掌握其方法,建立起更寬的解題思路,如果看一道就是一道,只記題目不記方法,看例題也就失去了它本來的意義,每看一道題目,就應理清它的思路,掌握它的思維方法,再遇到類似的題目或同類型的題目,心中有了大概的印象,做起來也就容易了,不過要強調一點,除非有十分的把握,否則不要憑借主觀臆斷,那樣會犯經驗主義錯誤,走進死胡同的。
2、要把想和看結合起來。
我們在看例題,在讀了題目以后,可以自己先大概想一下如何做,再對照解答,看自己的思路有哪點比解答更好,促使自己有所提高,或者自己的.思路和解答不同,也要找出原因,總結經驗。
3、各難度層次的例題都照顧到。
看例題要循序漸進,這同后面的“做練習”一樣,但看比做有一個顯著的好處:例題有現成的解答,思路清晰,只需我們循著它的思路走,就會得出結論,所以我們可以看一些技巧性較強、難度較大,自己很難解決,而又不超出所學內容的例題,例如中等難度的競賽試題。
這樣可以豐富知識,拓寬思路,這對提高綜合運用知識的能力很有幫助。學好數學,看例題是很重要的一個環節,切不可忽視。
多做練習
要想學好數學,必須多做練習,但有的同學多做練習能學好,有的同學做了很多練習仍舊學不好,究其因,是“多做練習”是否得法的問題,我們所說的“多做練習”,不是搞“題海戰術”。后者只做不思,不能起到鞏固概念,拓寬思路的作用,而且有“副作用”:把已學過的知識攪得一塌糊涂,理不出頭緒,浪費時間又收獲不大,我們所說的“多做練習”,是要大家在做了一道新穎的題目之后,多想一想:它究竟用到了哪些知識,是否可以多解,其結論是否還可以加強、推廣,等等,還要真正掌握方法,切實做到以下三點,才能使“多做練習”真正發揮它的作用。
1、必須熟悉各種基本題型并掌握其解法。
課本上的每一道練習題,都是針對一個知識點出的,是最基本的題目,必須熟練掌握;課外的習題,也有許多基本題型,其運用方法較多,針對性也強,應該能夠迅速做出。
許多綜合題只是若干個基本題的有機結合,基本題掌握了,不愁解不了它們。
2、在解題過程中有意識地注重題目所體現的出的思維方法,以形成正確的思維定勢。
數學是思維的世界,有著眾多思維的技巧,所以每道題在命題、解題過程中,都會反映出一定的思維方法,如果我們有意識地注重這些思維方法,時間長了頭腦中便形成了對每一類題型的“通用”解法,即正確的思維定勢,這時在解這一類的題目時就易如反掌了;同時,掌握了更多的思維方法,為做綜合題奠定了一定的基礎。
3、多做綜合題。
綜合題,由于用到的知識點較多,頗受命題人青睞。
做綜合題也是檢驗自己學習成效的有力工具,通過做綜合題,可以知道自己的不足所在,彌補不足,使自己的數學水平不斷提高。“多做練習”要長期堅持,每天都要做幾道,時間長了才會有明顯的效果和較大的收獲。
初中數學學習方法10
作為和代數并列為初中數學兩大知識點的幾何,常常因為圖形變化多端,方法多種多樣而被稱為數學中的變形金剛。話雖如此,變形金剛也不是無敵的,最終仍舊是人類的智慧更勝一籌。實際上,每一道幾何題目背后都有著一定的法則和規律,每一類題都有著相似的解題思想,這種思想的集中體現,便是模型(變形金剛的原力所在)。對于幾何,我們不僅僅要在戰術上堅定執行,在戰略層面上也要對幾何在初中三年的整體學習有一個明確的了解。
得模型者得幾何,而模型思想的建立又并非一朝一夕,是需要同學們在大量的實戰做題和不斷總結方法中培養出來的。對于模型的理解和認識,分為很多層面,最淺的是基本的形似,看到圖形相仿或相似的題目,能夠有意識的聯想以前學過的題型并加以運用,套用,這是最簡單的模型思想。高一些的是神似,看到一些關鍵點,關鍵線段或是題目所給條件的相似便能夠聯想到所學知識點,通過推理和演繹逐步取得正確的解法,記住的是一些具體模型,這,是第二種層次。最高的境界是,心中只有很少幾種基本模型,這些模型就像種子,看到一道題目就會發芽,開花結果,隨著對于題目的深入理解,不斷地尋找適合的花朵,每一朵花上面都有著一種具體的模型,而每種模型之間,都會有樹枝相連,相互間并不是孤立的,而是借由其他條件貫穿連接的。達到這樣的理解才能算是包羅萬象,駕輕就熟。
我們對于模型的把控能不應當僅限于會用于具有明顯模型特征的題目,對于一些特征并不明顯的題目,我們要有能力添加輔助線去挖掘圖形當中的'隱藏屬性。這就要求同學們對于每一種基本圖形的理解要十分深刻,不僅僅要認識模型,還要會補全模型,甚至構造模型來解決問題,這對于同學們動手添加輔助線的能力要求就很高了。
學好幾何無非做好以下幾點想學好幾何,一定要注意以下幾點:
1、多做題,在起步初期,多見一些題,對一些模型有初步認識。
2、多總結,盡量在老師的幫助下能夠總結出一些模型的主要輔助線做法和解題方法。
3、多應用,多用模型解決問題,不要沒有方法的撞大運,要根據圖形特點思考解法。
4、多完善,不斷做題總會有新的知識添加到已有的模型體系中來,不斷壯大自己的知識樹。
5、多思考,對于任何一道題都有可能存在不止一種方法,每種方法涉及到的模型不盡相同,要能夠通過一題多解發現模型之間的相互關系,增強自己對模型的理解深度。
從長遠的角度來說,中考幾何壓軸的考察趨勢越來越傾向于競賽化的趨勢,而考察重點則是以三大變化為主題的綜合題目。如今三大變換的思想也在不斷的滲透在初二幾何的題目中來,平移、旋轉、軸對稱這些技巧也會慢慢被我們所熟識。然而僅僅熟悉并不夠,我們還要結合模型把他們靈活掌握并能夠精確與用到實際的題目中去,這樣才能使我們做幾何題目的能力有所提高。
初二這一年是模型大爆炸得時期,上學期的全等三角形的模型,下學期的四邊形模型以及很多學校在初二暑假就會開設的圓的知識,很多都是需要同學們運用模型思想解決的問題。這些知識點不僅多,而且十分重要,可以說初中幾何部分的重點全部集中在初二這一年,故而打好基礎,勤加練習,多做總結是我們不得不去完成的任務。
初中數學學習方法11
一:平時的數學學習:
1、課前認真預習.預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十.帶著預習中不明白的問題去聽老師講課,來解答這類的問題.預習還可以使聽課的整體效率提高.
具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續15-20分鐘.在時間允許的情況下,還可以將練習冊做完.
2、讓數學課學與練結合.在數學課上,光聽是沒用的.當老師讓同學去黑板上演算時,自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做.
聽老師講課時一定要全神貫注,要注意細節問題,否則“千里之堤,毀于蟻穴”.
3、課后及時復習.寫完作業后對當天老師講的內容進行梳理,可以適當地做25分鐘左右的課外題.可以根據自己的需要選擇適合自己的課外書.其課外題內容大概就是今天上的課.
4、單元測驗是為了檢測近期的學習情況.其實分數代表的是你的過去,關鍵的是對于每次考試的總結和吸取教訓,是為了讓你在期中、期末考得更好.老師經常會在沒通知的情況下進行考試,所以要及時做到“課后復習”.
二:期中期末數學復習:
要將平時的單元檢測卷訂成冊,并且將錯題再做一遍.如果整張試卷考得都不好,那么可以復印將試卷重做一遍.除試卷外,還可以將作業上的錯題、難題、易錯題重做一遍.另外,自己還可以做2-3張期末模擬卷.
三:數學考試技巧:
如果想得高分,在選擇、填空、計算題上是不能丟分的.在考數學的時候思想不能開小差,而且遇到難題時不能想“沒考好怎么辦啊”等內容.在通常情況下,期末考試的.難題都是不知道怎么做,但有可能突然明白的那種.
遇到這種題目要沉著冷靜,利用題目給你的一切條件進行分析,如這次考試有兩個空白的鐘,還有去年七年級期末的幾題填空.這些條件都對你的解題有很大幫助.在期中、期末考試中有充足的時間,將自己的速度壓下來,
不是越快越好,爭取一次做成功.大概留35分鐘的時間檢查.最終提醒大家:多做題有一定作用,但上課聽講、認真答題及提高準確率、總結經驗才是最重要的.還要將所學的知識用到生活中去,做到學以致用.
當你運用數學知識解決了生活中實際問題的時候,你就會感受到學習數學的快樂.
初中數學學習方法12
初中數學學習方法
第一,要對計算足夠的重視
總以為計算題比分析應用題容易得多,對一些法則、定律等知識學得比較扎實,計算是件輕而易舉的事情,因而在計算時或過于自信,或注意力不能集中,結果錯誤百出。
其實,計算正確并不是一件很容易的事。例如計算一道像37×54這樣簡單的題,要用到乘法、加法的運算法則,經過四次表內乘法和四次一位數加法才能完成。至于計算一道分數、小數四則混合運算題,需要用到運算順序、運算律和四則運算的法則等知識,經過數十次基本計算。在這個復雜的過程中,稍稍粗心大意就會使全題計算錯誤。
因此,計算時來不得半點馬虎。
第二,要按照計算的一般順序進行
首先,弄清題意,看看有沒有簡單方法,有沒有得數保留幾位小數等特別要求。
其次,觀察題目特點,看看幾步運算,有無簡便算法。
再次,確定運算順序,在此基礎上利用有關法則、定律進行計算。
最后,要仔細檢查,看有無錯抄、漏抄、算錯等現象。
第三,要養成認真演算的好習慣
有些同學由于演算不認真而出現錯誤。數據寫不清,辨認出錯。這樣既不便于檢查,又極易看錯數據,所以一定要養成認真書寫數字的良好習慣。
第四,不能盲目追求高速度
計算又對又快是最理想的目標,但必須知道計算正確是前提條件,是最基本的要求,沒有正確作基礎的高速度是沒有任何價值的。所以,寧愿計算得速度慢一些,也要保證計算正確,提高計算的正確率
初中數學高效學習方法有哪些
1、平時的數學學習:
(1)課前認真預習.預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十.帶著預習中不明白的問題去聽老師講課,來解答這類的問題.預習還可以使聽課的整體效率提高.具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續15-20分鐘.在時間允許的情況下,還可以將練習冊做完.
(2)讓數學課學與練結合.在數學課上,光聽是沒用的.當老師讓同學去黑板上演算時,自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細節問題,否則“千里之堤,毀于蟻穴”.
(3)課后及時復習.寫完作業后對當天老師講的內容進行梳理,可以適當地做25分鐘左右的課外題.可以根據自己的需要選擇適合自己的課外書.其課外題內容大概就是今天上的課.
(4)單元測驗是為了檢測近期的學習情況.其實分數代表的是你的過去,關鍵的是對于每次考試的總結和吸取教訓,是為了讓你在期中、期末考得更好.老師經常會在沒通知的情況下進行考試,所以要及時做到“課后復習”.
2、期中期末數學復習:
要將平時的單元檢測卷訂成冊,并且將錯題再做一遍.如果整張試卷考得都不好,那么可以復印將試卷重做一遍.除試卷外,還可以將作業上的錯題、難題、易錯題重做一遍.另外,自己還可以做2-3張期末模擬卷.
3、數學考試技巧:
如果想得高分,在選擇、填空、計算題上是不能丟分的.在考數學的時候思想不能開小差,而且遇到難題時不能想“沒考好怎么辦啊”等內容.在通常情況下,期末考試的難題都是不知道怎么做,但有可能突然明白的那種.遇到這種題目要沉著冷靜,利用題目給你的一切條件進行分析,如這次考試有兩個空白的鐘,還有去年七年級期末的.幾題填空.這些條件都對你的解題有很大幫助.在期中、期末考試中有充足的時間,將自己的速度壓下來,不是越快越好,爭取一次做成功.大概留35分鐘的時間檢查。
初中數學學習復習技巧
1.讀的方法。同學們往往不善于讀數學書,在讀的過程中,易沿用死記硬背的方法。那么如何有效地讀數學書呢?平時應做到:
一是粗讀。先粗略瀏覽教材的枝干,并能粗略掌握本章節知識的概貌,重、難點;
二是細讀。對重要的概念、性質、判定、公式、法則、思想方法等反復閱讀、體會、思考,領會其實質及其因果關系,并在不理解的地方作上記號(以便求教);
三是研讀。要研究知識間的內在聯系,研討書本知識安排意圖,并對知識進行分析、歸納、總結,以形成知識體系,完善認知結構。
讀書,先求讀懂,再求讀透,使得自學能力和實際應用能力得到很好的訓練。
2.聽的方法。“聽”是直接用感官去接受知識,而初中同學往往對課程增多、課堂學習量加大不適應,顧此失彼,精力分散,使聽課效果下降。因此應在聽課程時注意做到:
(1)聽每節課的學習要求;
(2)聽知識的引入和形成過程;
(3)聽懂教學中的重、難點(尤其是預習中不理解的或有疑問的知識點);
(4)聽例題關鍵部分的提示及應用的數學思想方法;
(5)做好課后小結。
3.思考的方法。“思”指同學的思維。數學是思維的體操,學習離不開思維,數學更離不開思維活動,善于思考則學得活,效率高;不善于思考則學得死,效果差。可見,科學的思維方法是掌握好知識的前提。七年級學生的思維往往還停留在小學的思維中,思維狹窄。因此在學習中要做到:
(1)敢于思考、勤于思考、隨讀隨思、隨聽隨思。在看書、聽講、練習時要多思考;
(2)善于思考。會抓住問題的關鍵、知識的重點進行思考;
(3)反思。要善于從回顧解題策略、方法的優劣進行分析、歸納、總結。
4.問的方法。孔子曰:“敏而好學,不恥不問。”愛因斯坦說過:“提出問題比解決問題更重要。”問能解惑,問能知新,任何學科的學習無不是從問題開始的。因此,同學在平時學習中應掌握問問題的一些方法,主要有:
(1)追問法。即在某個問題得到回答后,順其思路對問題緊追不舍,刨根到底繼續發問;
(2)反問法。根據教材和教師所講的內容,從相反的方向把問題提出來;
(3)類比提問法。據某些相似的概念、定理、性質等的相互關系,通過比較和類推提出問題;
(4)聯系實際提問法。結合某些知識點,通過對實際生活中一些現象的觀察和分析提出問題。
此外,在提問時不僅要問其然,還要問其所以然。
5.記筆記的方法。很大一部分學生認為數學沒有筆記可記,有記筆記的學生也是記得不夠合理。通常是教師在黑板上所寫的都記下來,用“記”代替“聽”和“思”。有的筆記雖然記得很全,但收效甚微。因此,學生作筆記時應做到以下幾點:
(1)在“聽”,“思”中有選擇地記錄;
(2)記學習內容的要點,記自己有疑問的疑點,記書中沒有的知識及教師補充的知識點;
(3)記解題思路、思想方法;
(4)記課堂小結。明確筆記是為補充“聽”“思”的不足,是為最后復習準備的,好的筆記能使復習達到事倍功半的效果。
常見初中數學學習誤區
誤區一:平時是龍、考試是蟲
在數學學習過程中,常常出現這種現象,這也是在課余經常能夠聽到的部分同學的反饋信息。為什么學生在課堂上聽懂了,課后解題時一旦遇到稍有變化的新題型時卻無所適從呢?這說明上課聽懂還停留在“聽懂”這一初級層次上,而能達到舉一反三應用知識解決問題卻是對學生對數學知識在頭腦中加工重組構建的更高層次的要求,也是每位同學必須達到的要求。
教師所舉例題是范例同時也是思維訓練的手段,作為學生不應該只學會題中的知識,更要學會領悟出解題思路與技巧,以及蘊藏其中的數學思想方法。
調整策略:第一步:合上書,自己重做一遍例題,做題過程中,找出自己遇到的思維受阻的地方;第二步:對照課本解法,尋找自身思維漏洞,問自己:為什么課本這樣解決問題?我的解法不足之處在哪里?第三步:進一步思考:本題的條件、結論換一下還成立嗎?本題還有其它的解法與結論嗎?第四步:總結解題規律,提醒自己容易出錯的地方,作出重點提醒標記。
誤區二:忽略數學概念
有不少的學生認為數學多做題就能學好,可結果卻往往事與愿違,這是為什么呢?很多的原因在于概念不清。數學概念是學習數學的基礎。如果概念不清,往往導致認識、理解偏差,解題出錯。
例如,對正、負數概念的理解。在學生剛學習正負數時,教材曾把算術數前帶有正號和符號的數分別叫做正數和負數。隨著學習的逐步深入,特別是在學習用字母表示數和有理數的運算以后,再這樣形式地理解正負數就非常不夠了。這時應當把負數理解為小于零的數。如果缺乏對概念的這些更深層次的理解,就將導致出現 “-a是負數”,“a>-a”,“a+b≥a” 等一系列錯誤。
這是因為概念不清造成失誤的典型例子。除此之外,還有很多。由此可見,概念不清,做再多的題只能起到“事倍功半”的效果,想提高成績談何容易!
調整策略:第一步:記住概念,理解概念;第二步;“咬文嚼字”,抓住關鍵詞,吃透概念;第三步:聯系前后相關知識,深入理解概念;第四步:對照題目條件,聯想、對比相應概念;第五步:積累經驗,精選題目,注意類型,勤于總結。
誤區三:有押題的心理
有這種想法的人總會感到失望。每一份綜合試卷,出卷人總要避免考舊題、陳題,盡量從新的角度,新的層面上設計問題。但是考查的知識點和數學思想方法是恒久不變的。所以多做題,不會碰巧和考題零距離親密接觸,反而會把自己陷入無邊無際的題海之中。解決問題的辦法是從知識點和思想方法的角度分別對所解題目進行歸類,總結解題經驗的同時,確認自己是否真正掌握并確認復習的重點。
調整策略:一讓自己花點時間整理最近解題的題型與思路;二要思考:這道題和以前的某一題差不多嗎?此題的知識點我是否熟悉了?最近有哪幾題的圖形相近?能否歸類?三要善于歸類。不僅總結知識,更要總結方法與技巧,只有這樣,才能觸類旁通、事半功倍。
如:在“無理方程”的教學中,歸納出解法:① 去分母法;② 換元法;對于換元法給予歸納出兩種常見的題型:A 平方型;B 倒數型。又如在“三線八角”教學中,由于圖形較于復雜,學生不易找出同位角、內錯角、同旁內角,可以總結出同位角找字母“ F”,內錯角找字母“N”,同旁內角找字母“L ”。只有不斷的總結,才能有創新和發展。
誤區四:不能舉一反三
這種想法與做法在解題過程中并非完全不奏效,從而讓這樣做的同學更加堅定了信念。然而這種做法也并非完全奏效,也有“失靈”的時候。后者多出現于以下幾種情況:一是所給題目條件有限制,不能完全適用于公式;二是公式本身也有限制條件,并非適用所有題目的求解。
如:解方程:(a+1)x2-2x+5=0 。有的同學看完題目就開始套用“一元二次方程的求根公式”。事實上,本題能否套用求根公式主要取決于方程本身是否一定是一元二次方程。因此應就“ a+1 ”是否為0作出討論,分別就兩種情況求解。
調整策略:一是不僅記住公式,更要記住公式的適用條件與范圍;二是對照公式,仔細審題,看清哪些適用,哪些需另做討論。
誤區五:題海戰術
學習過程中經常遇到這樣的學生,簡單的題目不屑一做,總喜歡鉆研一些綜合性強的、靈活度高的“難題”,以為這樣就能學好數學;而喜歡做“偏題”、“怪題”的同學想法也很簡單,以為這樣就能拉開與其他學生的距離,提升自己學習成績。可結果卻總愛捉弄這些獨辟蹊徑的學生,給他們當頭澆上一瓢冷水,讓他們不由對自己的學習方法產生懷疑,甚至灰心失望。分析原因不難發現:中考試卷難題少,偏題、怪題很難遇到。而影響成績的主要因素不是這些“獨特”題目的因素。
調整策略:以基礎題目為主,注意總結中考試題出題類型與規律,適當做少量幾道有針對性的綜合靈活題目。
初中數學怎么提高分數
第一、課前
課前需要預習,預習需要我們去把接下來要上的內容整體上看一遍,然后找出其中的重點與難點,以及自己無法很好理解的內容,分別做上不同的標記,以便在上課的時候針對自己的問題去認真聽課與重點理解。
第二、課上
在上課的時候不太可能整節課都集中精神,這時候就更顯現出我們課前預習的重要性了。我們需要在上課的時候集中精神聽講預習中所遇到的重點與難點,盡量地在課堂上去理解吸收。同時也可以看看老師講的重點與自己課前預習所確定的重點是否一致。 另外,對于老師重點講解的東西需要做下相應的筆記,以便之后復習用。
第三、課后
課后的復習一定要及時跟上,不僅當天要對學習的內容進行復習,在之后的幾天里也應該要花一定的時間去復習,同時可以跟上一些練習進行檢測與鞏固。如果復習的時候發現還有不明白的地方,一定要及時的去詢問老師或是其他同學,將其弄懂。
第四、公式
公式是數學的靈魂,沒有公式,就如瞎子摸象,所以,公式要牢記,公式背會了,那么所有的難題都會迎刃而解!
第五、例題
例題就如數學中的模特,供人參考,例題也如母題一般,會一道,道道會,所以例題要搞懂!
第六、資料
數學是練會的,適用于題海戰術,題型大同小異,多練才能多得分!
第七、糾錯本
失敗乃成功之母,記錄自己的失敗,搞懂它,以后再次遇到,也就只是墊腳石,而不是絆腳石!
第八、不恥下問
孔子曰:敏而好學,不恥下問,不懂得就要問,老師就喜歡學生問問題,不要不好意思,會做題才是王道。
初中數學學習方法13
一、通讀全卷一是看題量多少,不要漏看題;二是選出容易題,準備先作答;三是把自己容易忽略和出錯的事項在題的空白處用鉛筆做個記號
二、認真審題審題一定要細心.要放慢速度,逐字逐句搞清題意(似曾相識的`題目更要注意不背答案),從多角度挖掘隱含條件及條件間內在聯系,為快速解答提供可靠的信息和依據
三、由易到難先做容易題,后做難題.遇到難題,要敢于暫時“放棄”,不要浪費太多時間,等把會做的題目解答完后,再回頭集中精力解決它
四、分段得分數學解答題有“入手容易,深入難”的特點,第一問較容易,第二、三問難度逐漸加大.因此,解答時應注意“分段得分”,步步為營.首先拿下第一問,確保不失分,然后分析第一問是否為第二、三問準備了思維基礎和解題條件,力爭第二問保全分,爭取第三問能搶到分
五、跳躍解答當不會解(或證)解答題中的前一問,而會解(或證)下一問時,可以直接利用前一問的結論去解決下一問
六、逆向分析當用直接法解答或證明某一問題遇到“卡子”時,可以采用分析法.格式如下:假設“卡子”成立,則(推出已知的條件和結論),以上步步可逆,所以“卡子”成立
七、先思后劃當發現自己答錯時,不要急于劃掉重寫.這是因為重新改正的答案可能和劃掉的答題無多大區別
八、學會聯想當遇到一時想不起的問題時,不要把注意力集中在一個目標,要換個角度思考,從與題目有關的知識開始模擬聯想.如“課本上怎么說的?”,“以前運用這些知識解決過什么問題?”,“是否能特殊化?”,“極限位置怎樣?”等等
初中數學學習方法14
素質教育以培養創新精神和實踐能力為目標,數學教學要實現這一目標,首先要解決學生數學能力的培養,而數學能力的核心是數學思維能力。正是如此,每位數學教師在進行課堂教學時,或多或少,或自覺或不自覺地總要設計一些問題,啟發引導學生去思維。我們知道,數學思維教學必須全面考慮,依據不同的教材內容和不同課型的內在聯系,提出不同的問題,從而多方面地培養學生的思維能力,提高學生良好的思維品質。下面本人根據多年來的教學實踐,談談課堂問題設計與思維能力培養的關系。
一、設計發散型問題,培養學生的靈活思維能力
教學實踐表明,學生思維能力的靈活程度與學生的發散思維水平密切相關。在日常教學中我們不難發現,優等生可以從同一道試題的題意產生出不同的假象,然后就每一種假想進行合理的思維推理,一旦思維受阻就無所事從,放棄解答。為此就要求我們教師在教學中必須適時合理且經常地設計發散型問題,引導學生多角度、多方面地思考問題。
數學可供設計發散式問題的內容比比皆是,只要我們能充分挖掘教材的內在聯系,發揮自身的優勢,就能很好地培養學生思維的靈活能力。
二、設計互變型問題,培養學生的逆向思維能力
通常評價一位學生思維靈活與否,其主要的判別條件之一,是考察學生逆向思維能力強不強。逆向思維是從對立的角度去考慮問題,也就是通常所說的:“反過來想一想”。初中教材中定義、公式、法則、圖像等通常是按照正向思維方式給出,學生在學習中習慣于這種正向思維,而不習慣逆向思維,這就容易造成學生知識結構的缺陷,造成思維方法上的刻板僵化。所以在教學中,對于每一節教學內容,在向學生進行一定程度的正向思維訓練后,應根據學情在教學的各層、各階段中,適時地設計有一定梯度的互變式問題,培養學生的逆向思維能力。
三、設計陷阱式問題,培養學生的批判思維能力
沒有批判就沒有創新,因此培養學生的批判能力是我們教師義不容辭的責任。教學實踐證明,適時地設計一些陷阱式問題,有利于培養學生的批判思維。這類題是為突破消極思維定勢而有意設下的陷阱,使題型與方法錯位,誘使學生“上當”、“中計”,從而使學生在失敗中吸取教訓,在“上當”、“中計”后幡然悔悟。在醒悟境界中學生會變得越來越聰明,思考問題越來越深刻,思維批判能力也就隨之而生了。
四、設計變角型問題,培養學生的概括思維能力
變角式問題是指從同一事理的不同角度去提出問題,它與培養學生的概括思維能力密切相關。
設計變角式問題進行的訓練,可以暴露問題,從而進行追根求源,防止思維定勢的負遷移,克服思維的呆板性,提高學生的概括能力。
例如:農機廠職工到距工廠15千米的生產隊檢修農機,一部分人騎自行車先走,40分鐘后,其余人乘汽車出發,結果同時到達。已知汽車的速度是自行車的3倍,求兩種車的速度。當學生解完此題后,可變換角度提出下面的問題,讓學生分析思考它們之間有何關系?
變式:甲、乙兩人各做15個零件,甲先做40分鐘后,乙才開始做,由于乙的'工作效率是甲的3倍,結果兩人同時完成了任務,求兩人每小時各加工幾個零件?
從表面上看來,它們分別是行程問題和工程問題,學生通過分析比較會發現,從某種意義上講,距離就是工作總量,速度就是工作效率,因而行程問題和工程問題有著本質的聯系,并能由此推及其它與這相關的數學問題的解答。
五、設計探究型問題,培養學生的創造思維能力
探究式問題是指做完一道習題后,保持已知條件不變,探究能否得出更深刻的結論;或改變命題條件、結論的若干元素,組成新型的逆向的或更一般性的、高一層的命題,并探究它的正確性,這對于培養學生的鍥而不舍精神和創新思維能力大有好處。
六、設計開放型問題,培養學生的縝密思維能力
縝密思維要求考慮問題全面,周密而不遺漏。數學教學中若能注重這方面能力的培養,不僅有助于學生提高數學能力,而且有益于學生嚴謹品格的培養。
數學教學中,我們常發現有的學生分析解決問題時,要么思路不清晰、考慮問題欠周密,導致解題不嚴密。教學實踐證明,適時地設計一些開放型問題,有利于培養學生的縝密思維能力。
例如:解關于X的方程abx2-(a2+b2)x+ab=0,學生的通常解法是直接采用十字相乘法求得方程的兩個根,而忽略了“當a=0,b≠0時及a≠0,b=0時原方程變為一次方程”的情況。因此為了提高學生合理分類,全面討論問題的能力,從而防止“解”不完備,除了多進行實例教學外,還要結合教材設計一些開放式問題對學生進行針對性的訓練,以便加強學生思維的縱向延伸于橫向交流,使思考問題到達全面、深刻。
綜上所述,課堂問題的設計直接或間接決定著學生思維能力的培養,而各種思維能力的發展是相輔相成、不容分割的。因此,必須根據學生的認知基礎、智力發展規律、教學內容的特點和內在聯系,綜合平衡,精心設計課堂問題,全方位地培養學生的思維能力,提高學生的思維品質。
初中數學學習方法15
初中數學的學習方法講解
例題的學習,對數學的學習很重要,希望同學們多看一下例題,可以很好的幫助同學們對數學知識的學習哦。
多看一些例題。
細心的朋友會發現,老師在講解基礎內容之后,總是給我們補充一些課外例、習題,這是大有裨益的,我們學的概念、定理,一般較抽象,要把它們具體化,就需要把它們運用在題目中,由于我們剛接觸到這些知識,運用起來還不夠熟練,這時,例題就幫了我們大
忙,我們可以在看例題的過程中,將頭腦中已有的概念具體化,使對知識的理解更深刻,更透徹,由于老師補充的例題十分有限,所以我們還應自己找一些來看,看例題,還要注意以下幾點:
1。不能只看皮毛,不看內涵。
我們看例題,就是要真正掌握其方法,建立起更寬的解題思路,如果看一道就是一道,只記題目不記方法,看例題也就失去了它本來的意義,每看一道題目,就應理清它的思路,掌握它的思維方法,再遇到類似的題目或同類型的題目,心中有了大概的印象,做起來也就容易
了,不過要強調一點,除非有十分的把握,否則不要憑借主觀臆斷,那樣會犯經驗主義錯誤,走進死胡同的。
2。要把想和看結合起來。
我們看例題,在讀了題目以后,可以自己先大概想一下如何做,再對照解答,看自己的思路有哪點比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,總結經驗。
3。各難度層次的例題都照顧到。
看例題要循序漸進,這同后面的“做練習”一樣,但看比做有一個顯著的好處:例題有現成的解答,思路清晰,只需我們循著它的思路走,就會得出結論,所以我們可以看一些技巧性較強、難度較大,自己很難解決,而又不超出所學內容的`例題,例如中等難度的競賽試題。
這樣可以豐富知識,拓寬思路,這對提高綜合運用知識的能力很有幫助。
學好數學,看例題是很重要的一個環節,切不可忽視。希望同學們考試成功哦。
中小學數學公式大全之追及問題
同學們認真看看,下面是老師對數學中關于追及問題公式的講解,希望同學們很好的掌握。
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
相信上面對數學中追及問題的相關公式知識已經很好的掌握了吧,希望同學們在考試中取得優異成績哦,加油吧!
中小學數學公式大全之流水問題
下面是對數學中,關于流水問題的公式內容講解,相信同學們會從中學習的更好的吧。
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
以上對數學中流水問題知識的內容講解學習,希望可以給同學們的學習很好的幫助,預祝大家在考試中取得優異成績哦。
中小學數學公式大全之濃度問題
關于數學中濃度問題的知識,希望同學們很好的完成下面的公式講解內容哦。
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
【初中數學學習方法】相關文章:
初中數學的學習方法01-12
初中數學學習方法04-25
初中數學學習方法11-29
(精選)初中數學學習方法10-24
初中奧數學習方法08-22
初中數學學習方法03-13
初中數學學習方法09-02
初中數學學習方法12-11
經典的初中數學學習方法01-15
初中數學學習方法11-20