<address id="ousso"></address>
<form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
  1. 2017考研數學:一元函數微分學常考的5大題型

    發布時間:2017-09-01 編輯:少冰

      微分學是考研數學重難點,而一元函數微分學的內容有4個部分,常常考察5類題型,大家需要一一去研究把握,下面是小編為大家整理收集的2017考研數學:一元函數微分學常考的5大題型,僅供大家參考。

    2017考研數學:一元函數微分學常考的5大題型

      ▶一元函數微分學有四大部分

      1、概念部分,重點有導數和微分的定義,特別要會利用導數定義講座分段函數在分界點的可導性,高階導數,可導與連續的關系;

      2、運算部分,重點是基本初等函的導數、微分公式,四則運算的導數、微分公式以及反函數、隱函數和由參數方程確定的函數的求導公式等;

      3、理論部分,重點是羅爾定理,拉格朗日中值定理,柯西中值定理;

      4、應用部分,重點是利用導數研究函數的性態(包括函數的單調性與極值,函數圖形的凹凸性與拐點,漸近線),最值應用題,利用洛必達法則求極限,以及導數在經濟領域的應用,如“彈性”、“邊際”等等。

      常見考察題型

      1、求給定函數的導數或微分(包括高階段導數),包括隱函數和由參數方程確定的函數求導。

      2、利用羅爾定理,拉格朗定理,拉格朗日中值定理,柯西中值定理證明有關命題和不等式,如“證明在開區間至少存在一點滿足……”,或討論方程在給定區間內的根的個數等。

      此類題的證明,經常要構造輔助函數,而輔助函數的構造技巧性較強,要求讀者既能從題目所給條件進行分析推導逐步引出所需的輔助函數,也能從所需證明的結論(或其變形)出發“遞推”出所要構造的輔函數,此外,在證明中還經常用到函數的單調性判斷和連續數的介值定理等。

      3、利用洛必達法則求七種未定型的極限。

      4、幾何、物理、經濟等方面的最大值、最小值應用題,解這類問題,主要是確定目標函數和約束條件,判定所論區間。

      5、利用導數研究函數性態和描繪函數圖像,等等。

    最新推薦
    熱門推薦
    <address id="ousso"></address>
    <form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
    1. 日日做夜狠狠爱欧美黑人