<address id="ousso"></address>
<form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
  1. 2016考研數學:高等數學各知識點考試要求

    發布時間:2017-06-03 編輯:bin

      導語:“得高數者,得天下”!高等數學在150分的考研數學一和數學三中占了56%,即82分,而高等數學二在150分的考研數學二中占了78%,即116分,那么高等數學都包含哪些內容呢?

      一、函數、極限、連續

      考試要求

      1.理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系。

      2.了解函數的有界性、單調性、周期性和奇偶性。

      3.理解復合函數及分段函數的概念,了解反函數及隱函數的概念。

      4.掌握基本初等函數的性質及其圖形,了解初等函數的概念。

      5.理解極限的概念,理解函數左極限與右極限的概念以及函數極限存在與左、右極限之間的關系。

      6.掌握極限的性質及極限四則運算法則。

      7.掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法。

      8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限。

      9.理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型。

      10.了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理、介值定理),并會應用這些性質。

      二、一元函數微分學

      考試要求

      1.理解導數和微分的概念,理解導數與微分的關系,理解函數的可導性與連續性之間的關系。

      2.掌握導數的四則運算法則和復合函數的求導法則,掌握基本初等函數的導數公式。了解微分的四則運算法則和一階微分形式的不變性,會求函數的微分。

      3.了解高階導數的概念,會求簡單函數的高階導數。

      4.會求分段函數的導數,會求隱函數和由參數方程所確定的函數以及反函數的導數。

      5.理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西(Cauchy)中值定理。

      6.掌握用洛必達法則求未定式極限的方法。

      7.理解函數的極值概念,掌握用導數判斷函數的單調性和求函數極值的方法,掌握函數最大值和最小值的求法及其應用。

      8.會用導數判斷函數圖形的凹凸性(注:在區間內,設函數具有二階導數。當時,的圖形是凹的;當時,的圖形是凸的),會求函數圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數的圖形。

      9.了解曲率、曲率圓與曲率半徑的概念,會計算曲率和曲率半徑。

      三、一元函數積分學

      考試要求

      1.理解原函數的概念,理解不定積分和定積分的概念。

      2.掌握不定積分的基本公式,掌握不定積分性質和定積分的性質及定積分中值定理,掌握換元積分法與分部積分法。

      3.會求有理函數、三角函數有理式和簡單無理函數的積分。

      4.理解積分上限的函數,會求它的導數,掌握牛頓-萊布尼茨公式。

      5.了解反常積分的概念,會計算反常積分。

      6.掌握用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉體的體積及側面積、平行截面面積為已知的立體體積、功、引力、壓力、質心、形心等)及函數的平均值。

    最新推薦
    熱門推薦
    <address id="ousso"></address>
    <form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
    1. 日日做夜狠狠爱欧美黑人