<address id="ousso"></address>
<form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
  1. 試題

    咨詢工程師《現代咨詢方法》例題及解析

    時間:2025-01-28 00:32:49 試題 我要投稿
    • 相關推薦

    2016咨詢工程師《現代咨詢方法》例題及解析

      試題一(25分)

    2016咨詢工程師《現代咨詢方法》例題及解析

      某產品過去5年的銷售額與目標市場人均收入的數據如表2,預計2006年該產品的目標市場人均收人為1 800元。

      表2  1999——2003歷年產品銷售額與目標市場人均收入

    年份 

    1999 

    2000 

    200l 

    2002 

    2003 

    產品銷售額(萬元) 

    30 

    35 

    36 

    38 

    40 

    人均收入(元) 

    1 000 

    1 200 

    1 250 

    1 300 

    1 400 

      已知數據:1999——2003歷年產品銷售額的平方和為6 465;1999——2003歷年人均收入的平方和為7 652 500;1999 2003歷年人均收入與產品銷售額乘積之和為222 400.

      問題:

      1.建立一元線性回歸模型(參數計算結果小數點后保留3位)。

      2.進行相關系數檢驗(取D=0.05,R值小數點后保留3位,相關系數臨界值見附表)。

      3.對2006年可能的銷售額進行點預測。

      知識點:

      本題涉及教材第三章市場預測方法的內容,《考試大綱》的要求是:了解德爾菲法、專家會議法、類推預測法;熟悉移動平均法、指數平滑法、成長曲線模型法和季節波動分析;掌握一元線性回歸、消費系數和彈性系數法。市場預測方法比較容易出案例題,應重點掌握,要注意回歸的相關檢驗,£檢驗,點預測與區間預測,這是經常容易忽視的問題。本題考核的內容單一,只是計算量較大,因此平時復習時要著重大題速度的訓練,親手做幾個題目。今后的方向偏向題目的綜合性和實用性,此類題目估計會較少出現了。

      答案:

      1.令y表示產品銷售額,x表示穆傲彪市場人均收入。則一元線型回歸模型為:

      Y=a+bx如

      根據已知數據:

      則:

      =(222400-1230 x179)/(7 652 500-1 230×6150)=0.025

      則一元線性回歸方程為:Y=5.05+0.025x

      2.根據得到的一元線性回歸方程,可得:

    【咨詢工程師《現代咨詢方法》例題及解析】相關文章:

    咨詢工程師《現代咨詢方法》試題01-17

    2016咨詢工程師《現代咨詢方法》試題10-08

    咨詢工程師《現代咨詢方法》演練題01-17

    2016咨詢工程師《現代咨詢方法》習題09-10

    咨詢工程師《現代咨詢方法》沖刺練習08-03

    咨詢工程師《現代咨詢方法》練習題11-07

    2016咨詢工程師《現代咨詢方法》演練題07-19

    2017咨詢工程師《現代咨詢方法》試題及答案10-15

    2025咨詢工程師《方法與實務》案例題01-17

    <address id="ousso"></address>
    <form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
    1. 日日做夜狠狠爱欧美黑人