<address id="ousso"></address>
<form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
  1. 《小數的意義》教學設計

    時間:2025-10-19 19:59:43 教學設計

    《小數的意義》教學設計

      作為一位兢兢業業的人民教師,可能需要進行教學設計編寫工作,教學設計是連接基礎理論與實踐的橋梁,對于教學理論與實踐的緊密結合具有溝通作用。優秀的教學設計都具備一些什么特點呢?下面是小編精心整理的《小數的意義》教學設計,希望對大家有所幫助。

    《小數的意義》教學設計

    《小數的意義》教學設計1

      教學內容

      蘇教版《義務教育課程標準實驗教科書 數學》三年級(下冊)第100~101頁。

      教學目標

      1. 使學生經歷認識小數的過程,初步了解小數的含義,會讀、寫一位小數,知道小數各部分的名稱,知道自然數和整數。

      2. 使學生在解決實際問題的過程中,培養初步的自主探究、合作交流的意識,感受數學和生活的密切聯系,增強學好數學的信心。

      教學過程

      一、 復習導入,喚起經驗

      出示:1/2 58 5/12 0.5 1.2 5.8

      提問:同學們,知道這些數分別是什么數嗎?

      談話:后面的三個數,你平時在什么地方見到過?

      學生可能會想到:鉛筆芯的規格、眼睛的視力、商品的價格等。

      揭題:是的,在日常生活中經常接觸到這樣的數。它們都是小數,今天我們一起來認識小數。(板書課題:認識小數)

      二、 聯系實際,探究發現

      1. 提出問題。

      提問:你想了解小數的哪些知識?

      學生可能提出:小數是怎么來的?學了小數有什么用處?小數應該怎樣讀,怎樣寫?……

      2. 教學第一個例題。

      談話:同學們想知道小數是怎樣產生的嗎?其實小數就來自我們的生活。先讓我們來做這樣一個活動:小組合作測量課桌面的長和寬,并用不同的數、不同的單位把測量結果表示出來。比一比,哪個小組想到的表示方法最多。

      學生在小組內測量課桌面的長和寬,交流不同的表示方式。教師巡視,并作適當指導。

      反饋:你們小組的測量結果是多少?想到幾種不同的表示方法?

      學生量出課桌面的'長是60厘米,寬是40厘米,并用600毫米、60厘米、6/10米等表示課桌面的長,用400毫米、40厘米、4/10米等表示課桌面的寬。(根據學生回答,板書:6分米=6/10米,4分米=4/10米)

      提問:除了上面幾種表示形式外,你還能用其他方法來表示嗎?

      如果學生主動想到分別用0.6米、0.4米表示課桌面的長和寬,則讓學生說一說是怎樣想到的,0.6米和0.4米分別表示什么意思。

      如果學生不能主動地用小數來表示,則講述:其實,6/10米還可以用小數0.6米來表示,0.6讀作零點六。(板書:= 0.6米 0.6讀作零點六)也就是說把1米平均分成10份,其中的6份可以用0.6米表示。

      提問:你能說一說0.6米表示的意思嗎?

      學生回答后,讓同桌間互相說一說。

      引導:那么4/10米還可以怎樣用小數來表示呢?(板書:0.4米 0.4讀作零點四)

      提問:0.4米表示什么意思?

      再問:那么你知道1分米是幾分之幾米嗎?用小數怎么來表示呢?2分米、5分米、8分米呢?

      學生交流時,分別讓學生在米尺上指出0.1米、0.5米、0.8米的實際長度。

      小結:十分之幾米可以寫成零點幾米。

      3. 做“想想做做”第1題。

      先讓學生弄懂題意,然后把答案填在書上。完成后,電腦出示答案,集體校對。

      4. 教學第二個例題。

      談話:昨天三(5)班的李萍同學在育才商店里買了這樣一些文具用品。我們一起來看看吧。

      出示文具的圖片及標價:

      鉛筆 圓珠筆 筆記本

      3角 1元2角 3元5角

      提問:一枝鉛筆是3角錢,如果用元作單位,是多少元呢?(分別用3/10元和0.3元表示,并讀一讀、寫一寫。)

      討論:一枝圓珠筆的價錢是1元2角,怎樣用元作單位,用小數來表示圓珠筆的價錢呢?請先在小組里討論討論,再說一說你是怎樣想的。

      反饋時,著重引導學生體會:1元2角是1元多2角,2角可以用0.2元來表示,1元和0.2元合起來就寫成1.2元,1元2角可以寫成1.2元。(板書:1元2角= 1.2元 1.2讀作一點二)

      提問:一本筆記本的價錢是3元5角,用元作單位的小數又怎么來表示呢?你是怎么想的?(板書:3元5角=3.5元 3.5讀作三點五)

      小結:幾元幾角寫成小數就是幾點幾元。

      5. 做“想想做做”第2題。

      讓學生在書上完成填空,并說一說是怎樣想的。

      6. 介紹自然數和整數。

      讓學生自由閱讀書本第100頁的最后一段,提出不懂的問題。

      7. 游戲。

      男同學代表整數,女同學代表小數,看到你所表示的數請你站起來。

      8 0.2 3.8 0 59 95.4 1 1/4 1.6

      三、 競賽激趣,拓展延伸

      談話:我們已經認識了小數。現在我們以小組為單位,一起來進行比賽好嗎?

      1. 聽錄音,把聽到的小數記錄下來。

      一只青蛙跳過0.4米的田埂,來到寬16.8米的河面上,踏上了0.2平方米的荷葉,狂叫三聲,撲通一聲掉進了深3.9米的河里。

      2. 做“想想做做”第3題。

      出示題目,讓學生搶答,并說一說每道題中分數、小數的意義。

      3. 回答下面的問題。

      一包上好佳,價錢在1元到2元之間,請你猜猜它的價錢是多少?

      小組合作討論后把價錢寫在紙上,交流時引導學生用“幾元幾角”和“幾點幾元”兩種方式表達,并在數軸上分別找出每種可能價錢所在的點。

      四、 全課總結

      提問:今天你學得開心嗎?你有什么收獲?

      五、 拓展

      課件介紹十進分數的發展史和古代數學家劉徽的杰出成就。

    《小數的意義》教學設計2

      教學內容:

      人教版四年級下冊第32頁和第33頁

      教學目標:

      1.理解小數的意義,認識小數的計數單位,知道相鄰兩個計數單位之間的進率。

      2.借助學生熟悉的米尺和格子圖等實物,讓學生多角度理解小數與分數的關系,經歷探索小數意義的過程,在探索交流中體會數學學習的樂趣。

      3.培養學生遷移、類推的能力及良好的數學學習品質。

      教學重點:

      理解小數的意義,知道小數的計數單位及其進率。

      教學難點:

      理解小數的意義

      教學準備:

      課件、米尺

      教學過程:

      一、復習導入

      (一)交流資料

      師:昨天老師讓同學們收集一些生活中的小數,收集了嗎?誰愿意和大家分享一下?

      生匯報交流。

      如:一袋方便面的價錢是1.2元;一個筆記本的價錢是2.6元……

      (二)師出示圖片

      師:王老師也找了一些圖片,看大屏幕。

      請你認真讀一讀,并說一說每張圖表示什么含義。

      生讀小數并結合圖說小數表示的含義。

      (三)小結

      看來小數在我們的`生活中應用非常廣泛,三年級時我們已經對它有所了解,今天我們進一步研究小數(板書:小數的意義)。

      二、探究新知

      (一)觀察猜測,實踐體驗

      師:今天老師給同學們帶來一個大家伙,(師舉起給學生們看)什么呀?(生:米尺)它有多長?(1米)可以干什么用?(測量物體的長度)今天這節課上它的功勞是最大的,借助它我們會掌握很多新知識。

      請兩位同學合作測量一下課桌的高度及它表面的長度,誰愿意?

      兩位學生測量,其他學生觀察,教師板書記錄:桌子長60厘米多,高80厘米。

      師:如果用米作單位,不夠1米怎么辦?

      生:可以用小數。

      小結:在我們測量和計算時,往往得不到整數的結果,這時常用小數來表示。

      (設計意圖:教師選擇學生熟悉的情境,讓學生通過動手實際測量活動,進一步理解和感受小數產生的必要性。)

      (二)直觀感知

      1.借助課件,引導理解一位小數的意義。

      師:請同學們觀察,把1米平均分成10份,每份是幾分米?(生:1分米)寫成分數是幾分之幾米?(生:十分之一米)像這樣的分數也可以用小數0.1米表示

      師:那3分米、7分米如果用米作單位,用分數和小數怎么來表示?

      學生獨立思考后同桌交流,匯報。

      生:3分米是表示把1米平均分成10份,表示其中的3份,用分數表示是十分之三米,也可以用0.3米表示;7分米則是……(生匯報的同時課件出示。)

      師:0.3米里有幾個0.1米呢?0.7米里又有幾個0.1米呢?1米里面有幾個0.1米呢?

      生獨立思考后匯報。

      師出示米尺教具:誰能在我的米尺上指出0.1米、0.3米、0.7米及0.9米……

      生臺前匯報結果,并說說是怎么想的

      師:你們太棒了!通過觀察以上分數和小數,發現了什么?

      小組討論交流匯報。

      生:像這樣十分之幾的分數可以用一位小數表示。

      (設計意圖:多角度、多形式地強化認識,理解一位小數是十進分數的另一種表現形式,并滲透小數的計數單位和進率。)

      2.借助直觀遷移,理解兩位小數的意義。

      課件出示32頁圖片

      師:把1米平均分成100份,每份是多少?(生:1厘米)1厘米用米作單位,用分數怎么表示?(一百分之一米)也可以用0.01米表示。那么4厘米、8厘米用分數怎么表示?用小數呢?生獨立思考后組內交流。

      匯報整理(課件演示)

      師追問:那么12厘米、38厘米用米作單位用分數怎么表示?小數呢?誰來老師手里的米尺上指一指呢?

      生找,指,并說為什么,那么1米里又有多少個0.01米呢?(100個)

      師:你們又有什么發現呢?

      生:分母是100的分數可以用兩位小數來表示(師板書)。

      3.直觀遷移,獨立探究,理解三位小數的意義。

      師出示課件,33頁的圖。

      生獨立思考后完成書中練習,然后小組交流。

      師追問:你能從這幅圖中找到其他小數嗎?(如:0.006,0.015……)

      你又有什么發現呢?

      匯報:分母是1000的分數也可以用三位小數表示。

      (設計意圖:在初步理解一位小數的意義的基礎上,通過獨立探究、小組交流等方法理解兩位小數、三位小數的具體意義,突破了難點,使學生進一步體會和理解了小數的意義,又一次滲透了計數單位和相鄰兩個計數單位間的進率。)

      4.遷移推理。

      師:試想一下,什么樣的分數可以用四位小數來表示?五位小數呢?

      生:分母是10000的分數可以用四位小數表示,分母是100000的分數可以用五位小數表示……

      小結:分母是10、100、1000……這樣的分數可以用小數來表示(板書)。

      (設計意圖:學生通過遷移應用,已經對小數的意義有一定的理解,在此基礎上繼續推理下去,有助于學生清晰而深入地理解,從而感知十進分數與小數的關系,歸納出小數的意義。)

      (三)認識計數單位

      師:整數有計數單位,小數也有計數單位,你知道小數的計數單位嗎?嘗試說一說。

      生根據自己的理解說。

      師課件出示,并要求學生齊讀(板書上顯示)

      追問:通過觀察發現,相鄰兩個計數單位之間的進率是多少?(生:10)

      板書:相鄰兩個計數單位之間的進率是10。

      (設計意圖:通過前面的學習,學生對小數的意義有了更深入的理解,所以這部分知識我采用讓學生試著說一說然后直接出示,提高了學生探究的自主性。)

      三、鞏固練習

      1.完成書33頁“做一做”,獨立完成,全班訂正。

      2.完成書36頁1、2、3題,要求:認真讀題,獨立思考。

      (設計意圖:通過這幾道基礎練習題,讓學生進一步理解小數的意義,并掌握小數的計數單位,為后續的學習奠定基礎。)

      四、總結

      1.師:回顧一下本節課的內容,談一談自己的收獲。生暢所欲言。

      2.齊讀書33頁“你知道嗎?”內容,了解小數的產生。

      (設計意圖:通過學生對本節課知識的梳理,加深對本課內容的認識、理解。通過閱讀,讓學生了解小數產生的歷史,對學生進行了數學文化的滲透。)

      五、板書設計

      小數的意義

      相鄰兩個計數單位的進率是10

      六、布置作業:

      完成書37頁7、8題

      七、教學反思

      在本節課教學中我重視讓學生親自經歷測量活動,結果不能用整數表示時,加強了對小數產生的必要性認識。

      在教學小數意義這部分時,我充分利用教學課件和實物教具相結合,直觀引出十分之幾、百分之幾、千分之幾的數都可以用小數表示,然后抽象概括出小數的意義,在此過程中我充分借助遷移類推,合理安排引導和放手的時機,給學生創造了大量的自主探索的機會,從而提高了學生自主學習的能力。

    《小數的意義》教學設計3

      教學內容:

      人教版數學四年級下冊P50-51

      內容分析:

      本節教學內容是在三年級“分數的初步認識”和“小數的初步認識”的基礎上進行教學的,是學生系統學習小數的開始。

      小數實質上是十進分數的另一種表示形式,其依據是十進制位值原則。教材著重從“小數是十進分數的另一種表示形式”來說明小數的意義,使學生明確“分母是10、100、1000……的分數可以用小數來表示。”

      教學設想:

      三年級學生已經初步認識了分數和小數,再次基礎上,課前讓學生進行復習。在課堂上通過練習題進行新知的教學,先由教師指導學生認識一位小數,在學習兩位小數和三位小數的時候,放手讓學生小組探究,體現學習的自主性。通過直觀的圖形幫助學生理解小數的意義,知道分母是10、100、1000……的分數可以用小數表示。通過想一想、說一說、議一議等活動使學生認識小數的計數單位和數位,掌握小數的計數單位間的進率是10。通過一系列練習鞏固認識小數的意義。

      教學目標:

      1、利用米尺和面積圖研究分數和小數之間的關系,感悟小數的意義:分母是10、100、1000……的分數可以用小數表示。理解小數是十進分數的另一種表示形式。

      2、認識小數的數位和計數單位。

      3、知道小數每相鄰兩個計數單位間的進率是10。

      教學重點:

      理解小數的意義

      教學難點:

      小數每相鄰兩個計數單位間的進率是10

      教學過程:

      課前談話:三年級我們已經認識了小數,課前也帶領大家根據學案復習了小數的知識,并要求大家把你寫的小數進行了分類。

      下面請同學們給同桌讀一讀你寫的分數和小數,并互相說一說分類結果

      課件出示學案內容

      一、復習導入

      (出示一位學生的分類結果)

      師:請這位同學來回答,你把這些小數分成了幾類?

      生:三類

      師:你是怎么想的?

      生:小數點后面只有一位的是一類,小數點后面是兩位的是一類,小數點后面三位的是一類

      師:你們分的和他一樣嗎?

      小數點右邊的部分是小數部分(板書補充數位順序表)

      小數部分只有一位的小數叫做一位小數,那小數部分只有兩位的小數呢?

      生:兩位小數

      師:三位的呢?

      生:三位小數

      師:今天我們一起來探究小數的意義(板書:小數的意義)

      【設計意圖:三年級已經初步認識了小數,會寫以米、元作單位的小數,并理解其意義。在此基礎上,也能用小數表示面積圖和線段圖中給定部分,因此利用課前復習關于小數的知識,為本節課的`學習做準備】

      二、新授

      (一)認識一位小數

      1、出示尺子圖

      師:看這幅圖,你是怎樣填的?

      生:分數:1/10米,小數:0.1米

      師:你是怎么想的?

      生:把1米平均分成10份,其中的一份是1/10米,用小數表示是0.1米。

      師:誰再來說一說?

      2、出示面積圖

      師:再看這個圖,你還能用分數和小數表示嗎?

      生:分數是1/10,小數是0.1

      師:為什么它也能用0.1表示?

      生:涂色部分表示把正方形平均分成10份,取其中的一份,用分數表示是1/10,用小數表示是0.1.

      師:其他同學同意嗎?也就是說它們都表示1/10。即1/10=0.1

      (出示課件:1/10=0.1)

      3、出示第二幅面積圖

      師:那現在涂色部分是多少?

      生:分數是3/10,小數是0.3

      師:0.3表示什么意思?

      生:把正方形平均分成10份,取其中的3份,就是3/10,分數是0.3

      師:0.3里面有幾個0.1?

      生:0.3里面有3個0.1

      4、出示

      師:你還能用分數和小數表示涂色部分嗎?給同桌說一說,并且說一說每個小數表示的意義

      (同桌互說)

      匯報:

      師:第一個誰來說?

      生:分數是6/10,小數是0.6

      師:0.6里面有幾個0.1?

      生:0.6里面有6個0.1

      師:第二個是多少?

      生:分數是9/10,小數是0.9

      師:0.9表示什么?

      生:把正方形平均分成10份,取其中的9份,就是9/10,小數是0.9

      師:0.9里面有幾個0.1?

      生:0.9里面有9個0.1

      5、課件出示

      師:這是我們剛才得到的幾組小數和分數,觀察這些分數,有什么特點?

      生:分母都是10,都是平均分成了10份得到的

      師:也就是十分之幾的數,十分之幾的數我們可以用幾位小數表示?

      生:一位小數

      師:十分之幾的數用一位小數表示(課件出示)

      給同桌讀一讀這句話

      6、課件出示

      師:我們再回到這個圖,現在涂色部分是0.9,也就是9個0.1,如果再添一份是多少?

      出示

      生:10/10、1

      師:十分之十就是1

      1里面有幾個0.1?

      生:1里面有10個0.1(課件出示)

      7、出示

      師:這個圖怎么表示?

      生:1.2

      師:1.2里面有幾個0.1?

      生:1.2里面有12個0.1(課件出示)

      8、出示

      師:同學們仔細看,你發現了嗎?一位小數都可以看做幾個0.1(引導學生說)

      0.1就是一位小數的計數單位,讀作十分之一(補充數位順序表)

      十分之一所占的數位就是十分位(補充數位順序表)

      師問:十分位的計數單位是什么?

      生:十分之一

      師:十分位所占的數位是?

      生:十分位

      師:老師在說一個小數:0.8

      8在哪一位?(生:十分位)

      它的計數單位是什么?(生:十分之一)

      有幾個這樣的計數單位?(生:8個)

      【從直觀的尺子圖入手到較抽象的面積圖,在對比中理解0.1的意義,逐漸遞進,在不斷理解幾個0.1的基礎上,認識一位小數的計數單位和數位。在老師的引導下,問題的深入中幫助學生理解】

      (二)認識兩位小數、三位小數

      1、自主探究

      師:剛剛我們認識了一位小數的意義、數位和計數單位。那兩位小數、三位小數呢?

      接下來請同學們根據學案內容,結合老師給你的問題進行自主探究。

      先請一位同學讀一讀

      學生活動

      2、練習反饋

      師:同學剛才討論的很積極,這幾個問題都解決了嗎?

      那老師出幾個問題考考大家

      3、出示

      師:涂色部分是多少?

      生:分數是1/100,小數是0.01

      師:你怎么想的?

      生:把正方形平均分成100份,其中的一份是1/100,小數是0.01

      師:誰再來說一說?

      出示

      師:這一個呢?

      生:分數是4/100,小數是0.04

      師:0.04里面有幾個0.01?

      生:有4個0.01

      出示

      師:這是多少?

      生:分數是21/100,小數是0.21

      師:0.21里面有幾個0.01?

      生:有21個0.01

      4、認識兩位小數的計數單位和數位

      師:兩位小數的計數單位是什么?(生:0.01)

      也可以說是百分之一(補充數位順序表)

      百分之一所占的數位是?(生?百分位)(補充順序表)

      兩位小數表示的是?(生:百分之幾的數)

      5、三位小數的意義

      出示

      師:再看這個圖,涂色部分是多少?

      生:分數是1/1000,小數是0.001

      師:0.001表示什么?

      生:把一個物體平均分成1000分,取其中的一份,就是1/1000,也就是0.001

      師:誰再來說?

      出示:0.125

      師:再看這個數,是多少?(生:零點一二五)

      沒有圖了,你還能說出他的意義嗎?

      生:把一個物體平均分成1000份,取其中的125份就是125/1000,用小數表示是0.125

      師:0.125里面有幾個0.001?

      生:有125個

      6、三位小數的計數單位和數位

      師:三位小數的計數單位是什么?(生:0.001)

      也可以讀作千分之一

      千分之一所占的數位是?(生:千分位)

      (補充數位順序表)

      三位小數表示的是什么數?(生:千分之幾的數)

      【設計意圖:在認識一位小數時,由教師帶領學習,而在認識兩位小數和三位小數時,則放手讓學生自主探究,利用認識一位小數時的學習經驗進行學習】

      7、延伸

      師:那四位小數呢?(生:萬分之幾)

      計數單位是?(生:萬分之一)

      往下說的完嗎?(生:說不完)

      我們可以用省略號表示(補充數位順序表)

      8、拓展

      師:小數部分有沒有最小的計數單位?

      生:有

      師:有不同意見嗎?

      生:沒有最小的計數單位,因為我們把物體平均分成10份,又平均分成100份,1000份,越分越小

      師:你們聽懂了嗎?

      想一想,0.1是怎么得到的?

      生:平均分成10份,1份是0.1

      師:那0.01就是平均分成100份,取其中的一份。0.001就是平均分成1000份,取其中的一份,隨著分的分數越來越多,一份就越來越小,如果我繼續分下去能分完嗎?越往下分越小,那有沒有最小的計數單位?

      生:沒有最小的計數單位。

      師:小數部分有沒有最大的計數單位?

      生:十分之一

      9、修改數位順序表

      師:拿出你剛才寫的數位順序表,看一看你寫的對嗎?

      有問題的修改一下

      (三)計數單位間的進率

      1、出示:

      師:第一個圖的涂色部分用小數表示是?(生:0.1)

      第二個圖的涂色部分用小數表示是?(生:0.10)

      你發現了什么?

      生:兩個圖的涂色部分一樣大

      師:也就是他們大小相同。(出示:0.1=0.10)

      有什么不同嗎?

      生:平均分的份數不同,一個平均分成了10分,一個平均分成了100份

      師:對不對?第一個平均分成了10份,取其中的一份,第二個平均分成100份,取其中的10份

      第一個表示1個0.1,第二個表示10個0.01

      你還有什么發現?

      生:10個0.01是0.1(板書)

      師:一起讀一遍

      2、出示(由1個0.1增加到10個0.1)

      生一起數到1

      師:你發現了什么?

      生:10個0.1是1

      師:(板書)再讀一讀

      3、小結

      師(指數位順序表):你有什么發現?

      生:進率是10

      師:對,小數和整數一樣,相鄰兩個計數單位間的進率是10

    《小數的意義》教學設計4

      教學目標

      (一)理解小數除法的意義,掌握除數是整數的小數除法的計算方法。

      (二)通過對算理的理解,培養邏輯思維能力,提高計算能力。

      教學重點和難點

      重點:理解并掌握除數是整數的小數除法的計算方法。

      難點:掌握整數除以整數不能整除時,在被除數的個位數的右邊點上小數點,再在被除數的后面添上“0”繼續除,直到除盡為止。

      教學過程設計

      (一)復習準備

      1.填空:

      (1)0.32里面含有32個( );

      (2)1.2里面含有12個( );

      (3)0.25里面含有( )個百分之一;

      (4)2.4里面含有( )個十分之一;

      (5)8里面含有( )個十分之一;

      (6)0.15里面有( )個千分之一。

      2.列豎式計算:

      把2145平均分成15份,每份是多少?

      2145÷15=143

      3.復習整數除法的意義。

      (1)一筒奶粉500克,3筒奶粉多少克?

      (2)3筒奶粉1500克,1筒奶粉多少克?

      (3)1筒奶粉500克,幾筒奶粉1500克?

      學生列式計算:

      (1)500×3=1500(克);

      (2)1500÷3=500(克);

      (3)1500÷500=3(筒)。

      比較兩個除法算式與乘法算式的關系,說出整數除法的意義:

      已知兩個因數的積與其中的一個因數,求另一個因數的運算。

      (二)學習新課

      1.理解小數除法的意義。

      將上面三題中的單位名稱“克”改為“千克”:

      (1)1筒奶粉0.5千克,3筒奶粉多少千克?

      (2)3筒奶粉1.5千克,1筒奶粉多少千克?

      (3)1筒奶粉0.5千克,幾筒奶粉1.5千克?

      學生列式計算:

      (1)0.5×3=1.5(千克);

      (2)1.5÷3=0.5(千克);

      (3)1.5÷0.5=3(筒)。

      觀察思考:兩個除法算式與乘法算式有什么關系?除法算式的意義是什么?

      討論后得出:小數除法的意義與整數除法的意義相同,是已知兩個因數的積與其中的一個因數,求另一個因數的運算。

      練習:P14“做一做”。

      2.研究除數是整數的`小數除法的計算方法。

      (1)學習例1:

      服裝小組用21.45米布做了15件短袖衫,平均每件用布多少米?

      ①學生列式:21.45÷15=

      ②學生觀察這個算式與以前學習的除法有什么不同?(被除數是小數。)

      ③引出問題:被除數是小數,其中的小數點應如何處理呢?

      ④學生試做。

      ⑤學生講算理。

      針對錯例,討論分析原因;針對正確的重點講清以下幾點:

      21除15商1余6,余下的6除以15,不夠除怎么辦?(把6個一化成低一級單位表示的數,即60個十分之一,再和下一位上原有的4個十分之一合在一起,是64個十分之一,繼續除。)

      除到十分位余4怎么辦?(把十分位上的4化成40個百分之一,并與被除數中原來百分位上的數5合在一起,是45個百分之一,繼續除下去。)

      商的小數點如何確定?為什么?(當除到十分位,用64個十分之一除以15,商的4表示4個十分之一,應寫在十分位上,所以在個位1的右邊點上小數點)

      (2)練習:P15“做一做”。

      68.8÷4= 85.44÷16=

      學生獨立完成后,同桌互相講算理。

      小結

      思考:商的小數點與什么有關?

      討論得出:商的小數點要和被除數的小數點對齊。

      (3)學習例2:

      永豐鄉原來有拖拉機36臺,現在有117臺。現在拖拉機的臺數是原來的多少倍?

      ①學生列式:117÷36;

      ②學生試做:

      ③117除以36商3余9,能不能作為結果?

      不能作為結果怎么辦?(繼續除。)

      怎樣做才能繼續除?(把9個一看成90個十分之一。)

      直接在個位的右邊添上0行嗎?應該怎樣添?(直接在個位的右邊添0不行,如果這樣9個一就變成了90個一,數的大小發生了變化。為了使數的大小不變,應在個位的右邊先點上小數點后,再添上0,使9個一變成了90個十分之一。)

      ④學生繼續做完,講出道理。

      (36除90個十分之一,商2余18。因為商表示2個十分之一,因此在商里3的右邊點上小數點。18個十分之一除以36,不夠商1個十分之一,再添0,化成180個百分之一,繼續除。商5個百分之一,把5寫在百分位上。)

      教師指出:像例2這樣的小數除法除到最后沒有余數就叫除盡了。

      (4)練習:P15“做一做”。

      25.5÷6 86÷16

      學生獨立完成后,訂正,找出錯題,分析原因。

      (5)總結

      思考:今天我們計算的除數是整數的小數除法與整數除法有哪些相同的地方,哪些不同的地方?

      討論得出除數是整數的小數除法的計算法則:

      除數是整數的小數除法,按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有余數,就在余數后面添0繼續除。

      (三)鞏固反饋

      1.寫出下列豎式中商的小數點。

      2.把下面的題做完。

      3.課本:P17:1,2。

      4.作業:P17:3,4。

      課堂教學設計說明

      小數除法的意義是以整數除法的意義為基礎的。通過改變單位名稱把整數乘除法算式改寫成小數乘除法算式。引導學生觀察比較,使學生順利理解小數除法的意義與整數除法的意義相同。

      除數是整數的小數除法,在引導學生充分感知的基礎上明確算理,在與整數除法的比較中總結出除數是整數的小數除法的計算法則。

      練習中針對重點、難點設計了專項練習,使新知識在學生原有的認知結構中“生根”,使原有的認知結構得到發展。練習過程中重視反饋,抓住學生出現的問題,及時分析、彌補,把問題消滅在課堂上。

      板書設計

      小數除法的意義和除數是整數的小數除法

      例1 21.45÷15

      =1.43(米)

      答:平均每件用布1.43米。

      例2 117÷36

      =3.25(米)

      答:現在拖拉機的臺數是原來的3.25倍。

    《小數的意義》教學設計5

      教學內容

      蘇教版五年級上冊第28-29頁。

      教材分析

      在一至四年級,“數與代數”領域主要教學整數的知識,學生已經初步掌握了十進制計數法。三年級(下冊)曾經教學了一位小數,初步體會了一位小數與十分之幾的分數間的聯系,這些都是本課基礎。本課教材中例1、例2借助常用的元、角、分和米、厘米、毫米單位之間的換算,通過這樣的感性認識,初步抽象出小數的意義。本課又是進一步教學小數性質、比較小數大小、改寫大數目的基礎,因此小數的意義是本單元教學的重點。

      學生分析:

      這一部分內容學生在三年級初步認識小數時其實已經有了學習的基礎。學生有以元為單位的小數表示金額,以米為單位的小數表示長度的經驗。如果本節課再把大量的時間放在這一方面,無異于原地轉圈。對于五年的學生來講,有了一定的學習能力,對數字語言、文字語言以及圖形符號語言有了一定程度的認識和理解。所以,課前的預習,五年級孩子是可以勝任的。所以教師要充分發揮學生自主探索的能力,讓學生自主運用已有的經驗理解小數的意義,從而實現感性認識到理性認識的飛躍。

      設計意圖:

      本節課是一次校級教研課,在第一次試教時按照例題教學,逐步去理解小數的意義。實施下來發現,學生思維就局限在這些單位換算中,而對小數意義的理解并不到位。于是備課組老師就討論對于這樣的概念課怎樣才能達到高效呢?最后商量一致同意嘗試學生先學后教,由學定教的教學方式,將本節課的設計分成三大板塊。

      (1)前置學習,初步感悟。課前通過引導題,讓學生自學例1、例2,在常用的價錢和長度單位換算之間,初步感悟分數與小數的.聯系。同時通過檢測題了解學生是否真正理解它們之間的換算,理解分母是10、100、1000……的分數可以用一位小數、兩位小數、三位小數……表示。

      (2)課中操作,溝通聯系。小數的意義是在分數意義的基礎上建立起來的。這符合認知建構的理論觀點:學習者對新知識的理解程度與他們內在的認知結構息息相關。布魯納說得更清楚:“獲得的知識如果沒有完整的結構把它們連在一起,那是一種多半會遺忘的知識。”學習一個概念,需要在心理上組織起適當的認知結構,并使之成為個人內部知識網絡的一部分。溝通小數與十進分數的內在聯系,是引導學生理解小數意義的關鍵。怎樣讓學生主動建構小數與十進分數之間的聯系?我們借鑒了特級教師朱國榮老師的設計。用一張正方形紙表示整數“1”,讓學生根據自己的理解,表示0.1的大小,在此基礎上認識0.9、0.2、0.8……從而理解1里面有10個0.1.繼續拓展,認識兩位小數、三位小數……

      (3)分層練習,實質理解。第一,基本練習,對口令;第二,看圖寫小數;第三,結合數軸找小數。這三組練習題,層層遞進,檢測學生能否從本質上真正理解小數的意義。

      實施過程

      一、前置學習,初步感悟。

      1.揭題:今天這節課,我們學習新的一單元,一起讀一讀。在三年級我們已經初步認識了小數。今天我們重點來研究小數的意義。

      2.課前大家對今天學習的內容已經進行了預習,小組交流,把你的錯誤向小組里的同學請教一下。(自學學習材料附后)

      3.全班匯報:

      第一層次:角改寫成元作單位可以用一位小數表示,分改寫成元作單位可以用兩位小數表示。

      第二層次:分米改寫成米作單位就是十分之幾米,也可以寫成一位小數,厘米改寫成米作單位就是百分之幾米,也可以寫成兩位小數,毫米寫成米作單位就是千分之幾米,也可以寫成三位小數。

      二、課中操作,溝通聯系。

      1.理解一位小數的意義

      (1).剛才我們通過課前研究,初步感知了小數和分數的聯系,那你能根據自己的理解說一說0.1的意義是什么嗎?

      (2).那么老師這里有一張正方形紙,如果把這張正方形的紙看作1,怎么在這張紙上表示0.1的大小。

      拿出正方形紙,分一分,涂一涂表示0.1的大小。

      展示交流,看看這些同學的作品,發表你的意見。

      那誰能很自信地確定你表示的是正確的?介紹你的想法。還有不一樣的嗎?

      雖然形狀不一樣,但所表示的都是把一個正方形平均分成10份,涂了其中的一份。

      (3).課件演示,這樣表示0.1嗎?要表示0.1還需要涂出一份。再說一說0.1表示什么意義。

      (4).仔細看,你除了看到0.1還看到那個小數?你是怎么看到0.9的?寫成分數是什么?0.9和0.1合起來是多少?1里面有幾個0.1。

      (5).這里你能看到哪2個小數,寫成分數是多少。合在一起是幾?

      (6).把1平均分成十份,我們認識了0.1、0.9、0.2、0.8外還可以表示那些小數。

      這些小數都是一位小數,一位小數表示什么意義呢?

      把1平均分成10份,表示其中的幾份,也就是表示十分之幾。

      2.理解兩位小數的意義

      (1).那0.01的意義是什么呢?

      (2).如果還是把這張正方形紙看成1,要在這張正方形紙上表示0.01,你準備怎么表示。

      把這張正方形紙平均分成100份,涂其中的1份表示0.01。

      (3).課件演示,0.01可以表示哪個分數。仔細觀察你除了看到0.01,你還能看到那個小數。

      0.99寫成分數是多少?0.99里有幾個0.01。0.01和0.99合在一起是多少。1里有多少個0.01

      (4).課件出示,你看到哪2個小數,分數是什么?

      0.28和0.72合在一起是多少。

      這些小數都是兩位小數,兩位小數表示什么意義。

      把1平均分成100份,取其中的幾份,也就是表示百分之幾。

      3.理解三位小數的意義

      (1).照這樣看三位小數表示?千分之幾。

      (2).三位小數最小的是誰?0.001表示什么意義。寫成分數是什么?你能寫一個最大的三位小數嗎?0.999表示什么意義。0.001和0.999合在一起是多少。1里面有多少個0.001。

      0.012寫成分數是多少?寫成小數是多少?

      4.拓展四位小數、五位小數

      (1).那四位小數表示什么呢?0.0123表示哪個分數。

      (2).五位小數表示什么意義?寫成小數是什么?

      5.概括小數的意義

      那什么是小數的意義呢?

      引導學生歸納:一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……

      三、分層練習,實質理解。

      1.對口令

      看來大家對小數的意義都已經基本掌握了,那我們一起來玩一個游戲,看誰學得扎實。

      規則:老師出示小數,請你快速說出分數,老師出示分數,請你快速說出小數。

      結合有單位的題目,0.80元、厘米、0.006米說一說表示的意義。

      2.寫小數

      剛才我們在一張平面的正方形中找到了小數,看,在這個正方體中,涂色的部分能用哪個小數表示呢?

      這個圖形又可以用哪個小數表示?如果要表示2.43怎么辦?

      3.數軸上得小數

      看、這是一條數軸,這兩個點可以用哪個小數表示。

      把數軸延伸,這兩個點可以用哪個小數表示。2.35在哪里?從0向左看你還能找到哪些數。

      4.通過本節課的學習你有什么收獲?

      雖然我們感覺掌握的還不錯,但是偉大的數學家高斯曾說過“給我最大快樂的,不是已懂得的知識,而是不斷的學習。”希望大家課后繼續研究小數的其他知識

    《小數的意義》教學設計6

      教學內容:

      人教版義務教育課程標準實驗教科書數學四年級下冊第50-51頁。

      教學目標:

      1、理解小數的產生和意義,認識小數的計數單位及進率。

      2、通過抽象概括,培養學生初步的邏輯思維能力。

      3、結合教材和教學,有機滲透“實踐第一”與“事物之間是普遍聯系”的辯證唯物主義觀點的啟蒙教育。

      教學重、難點:

      教學重點:概括小數的意義,認識其計數單位和進率。

      教學難點:理解小數的意義,掌握分數單位與小數單位之間的關系。

      課前準備:請學生測量自己周圍的物體,如課桌、黑板、門窗、大幅掛圖等的長與寬(或高),整理收集好數據。

      教學過程:

      一、導入

      1、我們數學課本的定價是多少元?(板書:5.10元)小明的身高是1.21米,小蘭的體重是38.2千克(板書:1.21米、38.2千克)。你們知道這些都叫什么數嗎?我們在哪冊課本中學過?小數是怎樣產生的?

      2.請同學們把各自測量周圍物體的長、寬(或高)的數據說一說。(教師將各個數據分別按“整米數”和“非整米數”兩類板書)這些不夠整米數的部分,如果仍然要用“米”作單位寫出來,除了用分數表示外,還可以用怎樣的數表示出來呢?請同學們閱讀課本內容。

      3.師生共同歸納:在進行測量和計算時,往往不能正好得到整數的結果,這時常用小數來表示。(板書:小數的產生)但是,小數的意義又是什么呢?這節課,我們就來著重研究它。

      二、新授

      1、3分米是怎樣寫成小數0.3米的呢?同學們請看(出示一把米尺),這把米尺的總長是1米,把它平均分成10份。每份是多少?1分米是幾分之幾米?把1/10米寫成小數是多少米?小數點右邊有幾位小數?左邊的數位上寫什么?(板書:0.1米)

      那么,3分米是幾分之幾米?寫成小數是多少米?小數點右邊有幾位小數?(板書:3/10米、0.3米)7分米是幾分之幾米?寫成小數是多少米?小數點右邊有幾位小數?(最后讓學生把測量實物得到的數據也寫成以米為單位的小數,同桌互相檢查評改)

      歸納小結:把分米數寫成以米為單位的數,得到的是十分之一或十分之幾米的數,可用一位小數來表示。(板書:一位小數)

      2、把1米平均分成100份,每份就是1小格,這1小格是多少?寫成分數是幾分之幾米?把它寫成小數是多少米?小數點右邊有幾位小數?左邊寫什么?(板書:1厘米、1/100米、0.01米)

      啟發學生類推:誰能說出3厘米、6厘米各用分數和小數來表示是多少米?(同時讓學生在書上的括號里寫出來,并指名一生板演填空)各有幾位小數?3和6寫在小數點右邊的哪位上?(再讓學生把測量實物得到的數據寫成以米為單位的小數,同桌互相檢查評改)

      歸納小結:把厘米數寫成以米為單位的數,得到的是百分之一或百分之幾米的數,有幾位小數?(板書:兩位小數)

      3、把1米平均分成1000份,每份是多少?(板書:1毫米)(用投影儀顯示1厘米中的“毫米”小格)這1毫米是幾分之幾米?怎樣寫成小數?小數點右邊有幾位小數?(指名一生板演填寫,其他學生寫在練習本上)6毫米、13毫米怎樣寫成分數和小數?小數點右邊的第一、第二、第三位上。各表示幾個1/1000米呢?

      引導小結:把毫米數寫成以米為單位的數,得到的是怎樣的分數?能寫成幾位小數呢?(板書:三位小數)

      (布置學生將收集到幾分米、幾厘米、幾毫米的數寫成以米為單位的小數,然后互相檢查評改)

      4、如果繼續分下去,得到1/10000、1/100000……的數。能寫成幾位小數?你會寫嗎?試一試,再互相檢查。

      5、歸納概括。用投影儀顯示下列問題。

      在上面的例子中,這些分數都能直接寫成小數,這些分數的分母分別是多少?

      表示十分之幾、百分之幾、千分之幾……的分數,它的分數單位各是多少?每相鄰兩個計數單位間的進率是多少?(如:1/10里面有多少個1/100?)與整數的進率有什么聯系和區別?

      像這種分母是10、100、1000……且相鄰的計數單位的進率是10的分數,可以怎樣依照整數的寫法寫成小數?

      因為整數左邊數位上的數是右邊相鄰數位上的數的10倍,所以小數數位也可以從左到右由高位到低位排列,在整數與小數部分之間用小圓點(小數點)隔開來。

      小數的 計數單位有哪些?同分數單位有什么聯系與區別?(引導學生對照板書內容想一想、比一比、議一議,然后回答)

      6、讓學生閱讀課本上有關的內容后,完成課本上“做一做”的練習,最后讓同桌學生互相說說:自己測量得到的數據是怎樣寫成小數的?

      三、全課總結、質疑

      四、鞏固練習

      1、口答:在5/10、1/2、1/100、1/15、1/80等數中,哪些分數能直接寫成小數?為什么?寫成的小數是多少?

      2、口答:判斷對錯,錯的要訂正。

      (1)11/1000寫成小數是0.011米。

      (2)0.18是18個0.1。

      (3)0.33的計數單位是百分之一。

      (4)0.57表示百分之五十七。

      3、搶答。(看到小數答相等的分數,看到分數答相等的小數)

      0.5 16/100 0.25 4/1000 0.075

      4、書面作業。(略)

      5、機動題:在下面的○里填上“>”、“<”或“=”。

      8/10○0.08 96/100○0.95

      4角○0.4元

      6、思考題:113毫米、15厘米用小數表示出來是多少米?

      [評析:小數的意義是本節課的教學重點,由于小學生的年齡和認知特點,對于小數的意義無論在表述上,還是在理解上都有一定的'困難。在設計教學過程時,本課有如下特點:

      1、充分感知,使學生明確小數的產生源于實踐。

      認知規律告訴我們,要使學生形成表象,加強感知是必不可少的。教學中,教師首先從貼近學生生活實際的身高、體重、書本價格的表示中。引出了小數在實際生活中有著廣泛的應用,使學生明白小數的產生源于生活實踐,激發了學生學習小數的興趣和強烈的求知欲望。接著又通過測量門窗、黑板、課桌、大幅掛圖等實物的長度和寬度的實際操作活動,使學生明白不能得到整米數的結果,這時也常用小數來表示。通過操作感知,使學生明確由于日常生活、生產的需要,從而產生了小數,滲透了“實踐第一”的辯證唯物主義觀點的啟蒙教育。

      2、憑借表象。展開聯想推理。

      建立表象后,以表象為依托,通過觀察米尺,聯系 舊知,結合采集的數據有層次地展開聯想推理。教師引導學生通過回憶、復習,把分米數、厘米數改寫成用分數形式表示的米數,再改寫成小數表示的米數。從而說明十分之幾的數用一位小數表示,百分之幾的數用兩位小數表示。把毫米數改寫成米數時,通過知識遷移,引導學生寫出三位小數,并類推出千分之幾的數用三位小數表示。在教學中,通過“觀察分析實例一聯想類推一結論”的過程,找到了分數(特定分母)與小數在數位、定義、進率等方面的實質性聯系,為小數意義的抽象概括作了充分的鋪墊。這樣,學生不但學得輕松,而且培養了學生分析、聯想類推的能力。

      3、培養學生抽象概括的能力。建立新的認知結構。

      教師不失時機地充分利用教材,引導學生通過“想、議、比、讀”等方法,抽象概括出小數的意義。在這個過程中,教師主要抓住三點:

      (1)抓住位數的擴展規律這根主線,界定能仿照整數寫法的特定分數的范圍;

      (2)通過小數的特征,建立抽象的概念——小數的意義;

      (3)聯想、分析、概括小數的意義。在學生有了充分的感性認識的基礎上,通過自學課本及教師的啟發。逐步理解小數意義的各個要素。

      然后教師設疑:

      (1)能直接寫成小數的分數,它的分母是多少?

      (2)表示其中一份的分數各是多少?相鄰兩個計數單位間的進率是多少?為什么?與整數相鄰的計數單位間的進率有什么聯系和區別?

      (3)像這種分母是10、100、1000……的分數。可以怎樣依照整數的寫法寫成小數?

      (4)小數的計數單位有哪些?讓學生借助教材分析討論,使學生在回顧知識的同時。加深對知識的理解。學生對小數的意義有了潛在的理解后,教師及時地引導學生抽象概括,使學生學習小數的意義有一完整、清楚的認識,能夠較完整地表達出小數的意義。形成新的認知結構。

      4、把握訓練內容,鞏固強化新知。

      練習不僅是內化和鞏固對知識的理解。而且是形成基本技能與發展智力的重要手段。本節課緊緊圍繞小數的意義和小數的計數單位兩方面,設計多層次的練習。在練習中注意思維步驟的物化,按照“一看、二比、三寫、四查”的步驟思考和運 作,從而有效地培養了學生良好的學習習慣。

      同時,多媒體動態直觀的演示、正確新穎多渠道的反饋形式、風趣生動的教學語言以及簡潔科學的板書設計,牢牢吸引了學生的注意力,使教學目標順利達成。

    《小數的意義》教學設計7

      教學目標

      1.在現實情境中,能初步理解小數的意義,學會讀寫小數,體會小數與分數的聯系。

      2.在用小數進行表達的過程中,感受小數與生活的聯系,增強數學學習的興趣。

      3.培養良好的學習習慣,提高學生的探究、歸納比較、推理能力。

      教學重點理解小數的意義。

      教學過程

      一、交流信息,引入課題

      師:課前布置學生收集一些與小數有關的資料,誰愿意讀給大家聽聽?談談你了解到了什么,又想到些什么?

      小結:剛才出現的這些數都是小數,它們表示什么意義,應該怎樣正確地讀和寫呢,;今天這節課我們一起來學習。(板書課題:小數的意義和讀寫方法)

      【設計意圖:學生的知識起點是三年級時對一位小數的直觀認識和刻畫,這是教學的起點,也是思維的動點。通過找身邊的小數,引發學生對小數的認識,激起進一步學習和探究的熱情】

      二、教學例1,初步感知

      師:為了便于研究,老師課前也收集了一些與小數有關的材料。

      1.出示例1三幅圖。圖上這些數都是小數,表示物品的價錢。會讀嗎?如果你到商店去買這些物品,該怎樣付錢呢?

      生1:0.3元就付3角。

      師:很好,你會把元轉化成角來考慮。那0.05元和0.48元呢?

      生2:0.05元就是5分。

      生3:0.48元就是4角8分。

      帥:對,也可以說成48分。

      2.師:把3角寫成用元做單位的分數,是多少呢?

      生:3角=3/10元。(一元=10角,1角就是1/10元,3角里面有3個1/10,是3/10元)

      師:3角=3/10元,也可以寫成0.3元,讀作零點三元。(板書)

      師:5分、48分也寫成用元做單位的分數,你們會嗎?同桌先討論一下,再回答。

      生:5分=5/100元,48分=48/100元(1元=100分,每份是1/100元,5分有5個1/100,就是了5/100元;把1元平均分成100份,每份是1/100元,48分就是48/100元(板書:5分=5/100元48分=48/100元)

      師:5/100元還可以寫成小數0.05元,讀作零點零五;48/100元還可以寫成小數0.48元,讀作零點四八。(繼續板書讀寫)

      小結:0.3、0.05、0.48都是小數,0.3的小數部分有位,是一位小數,0.05和0.48小數部分有兩位,是兩位小數,當然,還有三位小數、四位小數

      【設計意圖:小數的意義較為抽象,學生掌握起來有一定困難。在初步感知階段,利用0.3元該怎么付?學生把元轉化成角,進而追問3角錢以元為單位用分數表示?得出0.3元=3角3/10元,即0.3=3/10。充分運用學生已有的知識經驗和生活經驗,通過類比,遷移,為下面學習兩位小數、三位小數等作好充分的準備。在得出分數之后,告訴學生3/10還可以寫成像0.3這樣的小數,再教給讀法】

      三、教學例2,揭示意義

      1.師:剛才從1元:100分,我們想到了用分做單位的數都表示1元的百分之幾,都能寫成小數,在其他情境中也能看到這樣的現象。瞧,(課件出示米尺)這是一把米尺,我們截取了一部分。把1米平均分成100份,每份是1厘米。1厘米等于1/100米,還可以寫成0.01米。(板書:1厘米=1/100米=0.01米)那么,(出示)4厘米、9厘米寫成分數和小數各是多少呢?

      學生嘗試完成。

      師:請位同學來說一說,你是怎么填的?

      板書:1厘米=1/100米=0.01米

      4厘米=4/100米=0.04米

      9厘米=9/100米=0.09米

      師小結:請大家仔細觀察一下,0.01、0.04和0.09都是兩位小數。那前面對應的這排分數有什么共同之處呢?

      生:都是分母為100的分數。

      師:對,他們都是分母為100的分數。分母是100的分數可以寫成兩位小數。現在你們知道什么樣的分數可以寫成兩位小數嗎?什么樣的分數可以寫成三位小數呢?

      2.我們繼續觀察剛才那把米尺,把他平均分成1000份,每份是1毫米。(課件出示)1毫米是1米的1/1000,還可以寫成0.001米。(板書1厘米=1/1000米=0.001米)那7毫米、15毫米寫成用米做單位的分數和小數各是多少?大家試試吧。

      板書:1毫米=1/1000面米=0.001米

      7毫米=7/1000米=0.007米

      9毫米=9/1000米=0.009米

      小結:請大家觀察這一行分數和對應的小數,你有什么發現?

      3.總的觀察:三位小數是由分母是1000的分數得到的,兩位小數由分母是100的分數得到的,那位小數0.3呢?{是由分母是10的分數得到的')誰來說說什么樣的分數可以改寫成小數呢?

      生:分母是10、100、1000的分數可以用小數表示、:(屏搭上出示這句話)

      師:我們再從右往左看,0.3表示3/10,0.05表示5/100,0.48表示48/100,0.001表示1/1000,0.004表示4/1000你有什么發現?

      生:一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾。

      師(指著省略號):四位小數呢?(表示萬分之幾)

      【設計意圖:數學學習的本質在于數學思維、經過對一位、兩位、三位小數意義的具體分析后,教師抓住展示和交流這一時機,通過清晰直觀的板書,從左往右又從右往左地引導學生進行概括、歸納、推理,最后達成了對小數意義的系統認識和理解】

      四、練習拓展,鞏固提升

      (一)說說做做這個練習分4個層次進行。

      師:上面每個圖形都表示整數1,你會用分數和小數把涂色部分表示出來嗎?

      7/1033/1009/1000

      選其中個小數請學生說出表示什么意義。并通過上下對比觀察,再次強化:分母是10、100、1000的分數,用小數米表示分別是一位小數、兩位小數、三位小數。

      2.師:陰影部分是0.7,淮能用小數表示出空白部分?它又表示什么意義?

      3.出示空白圖形和0.9、0.07、0.52這三個分數,分別動手涂色表示出這三個小數。

      4.個人自由在空白圖形上涂色,同桌互相考查,分別用小數表示出涂色和空白部分。

      【設計意圖:在新課結束后,書上安排了練一練,教材的目的在于鞏固小數的意義,但如果這樣,題目的價值就沒能充分發揮出來,將練一練進行適當處理,使書上分散的練習融為一個整體,由淺入深地對一道習題進行充分的挖掘與應用,使題目增值。第一層次是對教材目標的基本達成;第二層次是對習題的進一步開發,滲透辯證統一思想;第三層次培養逆向思維能力;第四個層次由個體智慧到合作交流,對習題實現了更高層次的創造和升華:,采用了讓學生畫小數這種直觀的操作活動,伴隨著學生畫前的思考和畫后的交流,學生對小數意義的理解也就從畫出來想出來說出來,逐漸明了】

      (二)快速搶答。練一練1、2和書上練習第4題。

      (三)我說你寫。老帥報幾個小數,看誰能又快又好地記下來。

      0.0080.80.80

      問座位互相檢查一下,寫的對不對?

      (此時有同學爭論:0.8和0.80,是不是老師重復報了個?)

      師(故意):大家爭論什么?你為什么這樣想?

      生1:我認為0.8和0.80一樣大,所以是重復寫了;

      師:0.8表示什么:意義?0.80又表示什么意義?

      生2:0.8表示十分之八,是把1平均分成100份,取其中8份,00.8表示一百分之八十,是把1平均分成100份,取其中80份。

      師指出:0.80很特別,末尾是0,雖然末尾是0,但它表示兩位小數,這個。有特殊的意義,我們以后再學習。(為學習小數的基本性質打下伏筆)

      (四)糾錯能手。家文具店里的商品標價不太規范,請你幫忙把這些標價改成用元作單位的小數。

      小刀3角擦皮8分直尺5角9分

      (五)開放題:把6毫米用小數表示出來,你有幾種方法?

      (六)出示姚明照片:認識嗎?準來介紹介紹他?他的身高是多少?

      生:2米26。(板書2米26)

      師:2米26是口頭話,用規范的數學語言,應該說成多少米?(2.26米)你的身高是多少米?猜猜老師的身高。(1.63米)這些數跟我們今天所學的小數還有點不同(整數部分不是0)。關于這些小數的知識,我們以后繼續學習。

      【設計意圖:在拓展提升部分,通過多種形式的練習,引導學生從身邊的現象入手,不斷鞏固所學的小數的意義和讀寫方法。注意細節的處理,0.8和0.08的比較,6毫米的三種表示方法,以及姚明身高2.26米的表述,既引導學生歸納出數學知識,又為后續學習打下鋪墊】

    《小數的意義》教學設計8

      教學設想:

      小數的意義是西師版教材四年級下冊的內容。本節內容是學生在三年級下冊學習“小數的初步認識”的基礎上來學習的,同時小數的意義是學生系統學習小數知識的開始,是學生認數范圍的一次擴充,也是對學生日常經驗的一個歸納與總結。依據新課程理念,我在本節教學設計中力求讓學生結合現實情境,進一步認識小數,充分調動學生的舊知,促進知識的正遷移,同時加強操作活動,引導學生主動獲取知識。

      教學目標:

      1、讓學生理解和掌握小數的意義,以及小數的計數單位,理解相鄰兩個計數單位的進率是十進關系。

      2、讓學生經歷觀察、操作、探索等活動,理解小數的意義以及數的計數單位,培養學生動手能力、推理能力和創新意識。

      3、讓學生感受數學與生活的密切聯系,激發學生的求知欲。

      教學重難點:

      重點:理解一位小數,二位小數的意義。

      難點:理解三位小數的意義,同時歸納小數的意義。

      教學具準備:

      課件、學習卡2張、米尺、皮尺

      教學過程:

      一、創設情景,引入新知

      師:孩子們,北京奧運會的腳步離我們越來越近了,全國各地都在積極迎接奧運的到來,我們學校為了迎接奧運也舉辦了一場校動會。(課件出示,主題圖)

      師:你們從這幅圖上了解了哪些信息?

      生:張兵跳遠的成績是2.36米

      生:王志跳高的成績是0.92米

      生:校運會60米的紀錄是7.8秒,100M的紀錄是13.4秒,跳遠的'紀錄是2.87M,跳高的紀錄是1.06M。

      生:我知道這些數都是小數。

      師:孩子們真聰明,觀察真仔細.那么你們想知道為什么會產生小數嗎?

      生:想

      師:現在我想讓兩位孩子來量一量黑板的長和寬。

      學生上臺用皮尺測量。

      生:黑板長3米10厘米

      生:黑板寬95厘米

      師:孩子們黑板的長和寬是不是都是整數呢?

      生:不是

      師:在測量的計算中,我們有時不能得到整數的結果,通常可以用小數表示。板書:小數

      師:孩子們,我們在三年級時都已經初步認識了小數,那么下面這些空我相信大家都能填出來吧!(課件出示)

      1角=()10元=()元0.1元是把1元平均分成10份,取其中()份。

      1dm=()10米=()m0.1米是把1米平均分成()份,取其中()份

      5角=()()元=()元0.5元是把1元平均分成()份,取其中()份

      3dm=()()m=()m0.3是把()平均分成()份,取其中()份

      (生獨立完成,并匯報)

      二、探索新知

      師:孩子們完成的真不錯,來鼓勵一下自己。好!現在請大家拿出老師課前發給你們每個小組(二人一組)的學習卡片1,然后聽清老師講要求。(課件出示)

      (1)、涂一涂:用斜線把其中十個直條涂出陰影,并用分數、小數表示,再把7個直條涂上陰影,用分數小數表示。

      (2)、填一填:

      分數()10

      分數()10小數()

      小數()

      (3)、說一說:0.7表示把一個正方形平均分成()份,取其中()份

      0.7里面有()個0.1

      0.1、0.7都是一位小數,都表示把1個整體平均分成()份,分別取其中的()份,()份。

      (4)、討論:一位小數表示幾分之幾?幾分之幾表示一位小數?

      (5)、完成后,組內兩個同學相互說一說

      (學生兩人一組合作完成)

      師:好!孩子們我看大家完成的差不多了,誰來給大家匯報一下?

      生:(上臺用視頻展示臺把學習卡1展示)我們小組是這樣涂的

      分數110分數710

      小數(0.1)小數(0.7)

      0.7表示把一個正文形平均分成(10)份,取其中(7)份。0.7里面有(7)個0.1

    《小數的意義》教學設計9

      一、教學目標

      (一)知識與技能

      在學生初步認識分數和小數的基礎上,使學生進一步理解小數的意義,認識小數的計數單位及相鄰兩個單位間的進率。

      (二)過程與方法

      在操作中使學生體會小數產生的必要性。通過觀察、比較,以及自主探究建立小數與分數之間的聯系。

      (三)情感態度和價值觀

      在學生積極參與數學活動的過程中,滲透數形結合的數學思想,培養學生的抽象概括和遷移能力。

      二、教學重難點

      教學重點:理解小數的意義,理解小數的計數單位及它們間的進率。

      教學難點:理解小數的計數單位及它們間的進率。

      三、教學準備

      米尺、彩帶、磁條。

      四、教學過程

      (一)創設情境,導入新課

      1.同學們在前面的學習過程中已經學習了長度單位,還會用工具測量物體的長度,估一估,課桌面的長度是多少?

      2.你們估計得對不對呢?讓我們一起用直尺來驗證一下。

      3.誰愿意把你測量的結果告訴大家?

      學生匯報預設:

      學生1:我測量課桌面的長度是120厘米。

      學生2:我測量課桌面的長度是1米2分米。

      教師:課桌的長度如果以米為單位就是1.2米。

      (1)在生活中,人們進行測量和計算時,往往不能正好得到整數的結果。這時常用小數表示。

      (2)認識小數嗎?在哪兒見過小數?今天我們一起學習小數的意義。

      【設計意圖】聯系生活實際提出問題,讓學生通過動手操作,在實際測量和記錄的過程中發現有時得不到整數結果,從而引發認知沖突,激發學生進一步探究的欲望,感受小數產生的必要性。

      (二)嘗試探究,理解意義

      1.認識一位小數。

      教師:出示1米長的彩條,如果把1米平均分成10份,每份是多長?把1分米改寫成

      用“米”做單位的分數怎么表示?說一說你是怎么想的?

      學生交流想法。

      教師總結:米用小數表示就是0.1米。

      教師:3分米,7分米改寫成用“米”作單位的分數應該怎樣表示呢?小數呢?請同學們試著寫一寫。

      學生獨立完成,教師巡視。交流分享學生的思考過程。

      教師:仔細觀察黑板上的每組分數和小數,你發現了什么?

      結合學生回答,教師小結:像這樣,小數點的右面有1個數字,這樣的小數,就稱為一位小數。也就是說,分母是10的分數,可以用一位小數表示。

      練習:用小數怎么表示?呢?0.5怎樣用分數表示?

      參考答案:0.9,0.6,。

      2.認識兩位小數。

      教師:我們都已經知道了一位小數表示十分之幾,猜一猜:兩位小數可能與什么樣的分數有關?

      1厘米寫成用“米”作單位的`分數應該怎么表示?小數呢?4厘米呢?8厘米呢?

      學生先獨立完成,再合作交流。

      教師:觀察每組中的分數和小數,說一說你發現了什么?

      學生1:分數的分母都是100。

      學生2:小數點的右面都有2個數字。

      教師小結:同學們觀察得都非常正確。類似剛剛學習的一位小數,像這樣,小數點的右面有2個數字的小數就稱為兩位小數。也就是說,分母是100的分數,可以用兩位小數表示。

      【設計意圖】讓學生根據一位小數表示十分之幾,猜想出兩位小數和什么樣的小數有關,有意識地促進遷移,讓學生體驗成功,培養學生的學習興趣和信心。

      3.小數的意義。

      教師:結合我們剛才對一位小數和兩位小數的認識,自選兩位以上的小數進行研究,完成表格。

      學生先獨立研究,再匯報交流結果,教師根據學生回答適時板書。

      教師:通過你的研究,你發現了什么?

      學生1:我發現分母是1000的分數可以寫成三位小數。比如:把1米平均分成1000份,這樣的一份就是1毫米,也就是米,寫成小數就是0.001米。

      學生2:三位小數就表示千分之幾。

      教師:其他同學還有誰也研究了三位小數的意義?誰愿意也來說一說?

      學生預設:我選擇的小數是0.023,也是一個三位小數,可用分數表示為千分之二十三。

      教師:說得非常好!一位小數表示十分之幾,兩位小數表示百分之幾,三位小數就表示千分之幾。那么四位小數表示什么?五位小數呢?

      學生:四位小數表示萬分之幾,五位小數表示十萬分之幾。

      結合板書,請同學們仔細觀察、回憶一下我們剛才的探討過程,和同伴交流一下,你都發現了什么?

      學生1:我認為分母是10、100、1000、10000等的分數可以用小數來表示。

      學生2:我知道了十分之幾可以寫成一位小數,百分之幾可以寫成兩位小數,千分之幾可以寫成三位小數……

      學生3:也就是說,一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……

      小結:分母是10、100、1000……這樣的分數可以用小數表示。一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……

      4.認識小數的計數單位。

      教師:大家都知道分數中,十分之幾的計數單位是十分之一,百分之幾的計數單位是百分之一,千分之幾的計數單位是千分之一。請同學們想一想小數的計數單位分別是多少呢?

      學生交流,教師根據學生匯報歸納整理:小數的計數單位是十分之一、百分之一、千分之一……

      【設計意圖】引導學生借助對“一位小數表示十分之幾”“兩位小數表示百分之幾”的直觀認識,獨立探究三位小數、四位小數、五位小數……表示的意義,最后抽象概括出小數的意義,有效地鍛煉了學生的多種能力,突破了重難點,同時也滲透了小數中相鄰兩個計數單位間的進率。

      (三)鞏固練習,強化認知

      1.第33頁做一做。

      2.第36頁練習九第1題。

      3.填空:

      0.6 里面有6個( );再增加( )個 0.1就等于1。

      0.25里面有( )個0.01。

      32個0.001是( );32個0.01是( );32個0.1是( )。

      4.在括號里填上適當的小數。

      學生先獨立完成,教師再讓學生匯報答案,集體評議。

      【設計意圖】通過不同層次的練習設計,讓學生在對比練習的過程中不斷加深對小數意義的理解,同時有意識地結合生活實際體現知識的應用價值,幫助學生根據小數意義理解生活中常見的小數所表示的含義。

      (四)總結梳理,拓展延伸

      1.今天這節課我們學習了哪些知識?你有什么收獲?

      2.介紹對小數發展具有杰出貢獻的兩位數學家。

      【設計意圖】通過問題幫助學生梳理本課所學的知識,最后通過課外延伸向學生介紹與小數發展相關的數學資料,讓學生進一步感受數學文化,培養學生的數學素養。

    《小數的意義》教學設計10

      教學目標:

      1.結合具體情境,通過操作、觀察、類比等活動理解小數的意義。

      2.經歷探索小數意義的過程,培養歸納能力。

      3.在學習小數意義過程中,培養探求知識的興趣,提高獨立探索和合作交流的能力。

      教學重難點:

      理解小數的意義和小數的計數單位。

      教具準備:

      米尺、課件。

      教學過程:

      一、回顧導入

      1.讀一讀信息(課件出示)想一想,這樣寫符合實際嗎?

      (1)老師的體重是565千克。

      (2)小明的身高是145米。

      (3)笑笑的數學測驗成績是935分。

      2.這些數據都少了“一點”,那你知道小數由幾部分組成嗎?比如這里,51.5這個小數,里面的51是整數部分,小數點右邊的這個5就是小數部分。那這兩個5所在的數位一樣嗎?表示的意義一樣嗎?

      3.那這小數部分的5所在的數位是什么呢?這個數位的計數單位又是多少?學了小數的意義這節課,你就能找到答案。

      二、探索新知識

      1.過去,我們學習長度單位時,都測量過自己的課桌高度,那么你們想知道老師的講桌的高度是多少嗎?

      指名測量,其他同學觀看。

      2.匯報測量結果。

      3.在日常生活中,測量一個物體的長或高時,往往得不到整數結果,這時,我們就要用到小數。那么,小數的意義是什么呢?這節課我們將繼續來學習。

      4.出示米尺圖。

      上圖把1米平均分成了多少份?每份在尺子上是多少米?寫成分數是多少?

      5.請同學們看米尺:從0到30,從0到70,應該是幾分米,十分之幾米?用小數怎樣表示呢?

      十分之幾的數可以用一位小數表示,那么,請同學們猜一猜,兩位小數與什么樣的分數有關?

      6.出示米尺。

      指著板書:有什么新發現?學生匯報。

      7.提問:如果我們把1米平均分成1 000份,每一份是多少?從0刻度線到第一條短刻度線表示1毫米,它是幾分之幾米?寫成小數呢?

      讓學生說出兩個用毫米作單位的長度,并請自己的同桌把它用小數表示出來。

      學生交流,并匯報結果。再次提問:從這里你們又發現了什么?匯報。

      8.我們這節課學習的知識,你都發現了什么?同桌先交流,后匯報。

      小結:分母是10、100、1 000……的分數可以用小數表示,一位小數表示十分之幾?兩位小數表示百分之幾?三位小數表示千分之幾?……

      進一步提問:在分數中,十分之幾的計數單位是十分之一?百分之幾的計數單位是百分之一?千分之幾的計數單位是千分之一?請同學們想一想,小數的計數單位分別是多少?歸納整理。

      三、鞏固練習

      第一層練習:分數小數互化。

      第二層練習。

      1.填空

      (1)0.8表示( ),它的計數單位是( ),它有( )個這樣的計數單位。

      (2)1里面有( )個0.1和( )個0.01。

      (3)0.52是由( )個0.1和( )個0.01組成的。

      2.判斷:

      (1)0.8是把1個整體平均分成10份,表示這樣的8份。 ( )

      (2)1毫米寫成小數是0.01米。 ( )

      第三層練習: 猜數游戲。

      小明和小紅的數各是多少?

      四、總結

      師生共同回顧本節課內容。

      反思:

      “小數的產生和意義”人教版課程標準實驗教材四年級下冊的內容。這一內容是在三年級“分數的初步認識”和“小數的初步認識”的基礎上進行教學的。本課要求學生明確小數的產生和意義,小數與分數的'聯系,掌握小數的計數單位及相鄰兩個計數單位之間的進率,從而對小數的概念有更清楚的認識。

      小數的意義是什么?一位小數、兩位小數是怎么來的?這是本課中重點要解決的概念問題。本節課,教者力求在課堂上給學生充足的空間,采用學生自主探究、合作交流的方式,把學生引入研究性學習的氛圍,主動建構知識。

      在小數意義的教學中,教材中利用米與分米、厘米、毫米的改寫,讓學生理解小數的意義。設計了“把一米平均分成10份,每份是多少?如果用米做單位,每份是多少米呢?能分別用分數、小數表示嗎?教者在教學中直接從米尺入手,從平均分成10份、100份、1 000份入手,讓學生在改動分母是10、100、1000的分數中來理解分數的意義。從而避免了教材中由于增加了米后意思上表達的不夠清楚。

      引導學生進行觀察歸納一位小數的意義時,當黑板上形成了下面的板書:0.1= 0.4=.7=后,讓學生進行觀察,讓學生思考“通過觀察發現了什么”。由于有了豐富的感性材料作為支撐,學生輕易地完成了對一位小數意義的抽象過程。然后兩位,三位小數的意義的研究方法,是一個類推的過程,學生充分經歷了一位小數的意義學習過程后,先猜測,兩位小數、三位小數應該表示什么?再應用生活的例子加以說明,真正使學生卷入了學習過程中,學生的主體地位得到了較好的發揮。

      最后,通過教師點撥和學生觀察、討論,將小數計數單位和計數單位之間的進率通過對整數計數單位的復習進行引申。使知識形成一個完整的知識結構體系。

      反思這節課,也有一些地方預設的不夠充分:

      1.在本課的教學內容安排上要突出小數的意義,盡量做到在三年級教學內容之上進行提升。歸納小數意義是本節課的難點,由于學生數學語言的表述錯誤較多,所以我花了一定的時間讓學生說思考過程,導致時間上較緊迫。

      2.練習量較大,沒有考慮學生實際。

      “課堂教學中我們教學的關注點是什么?”通過本課的教學,我又有了自己的一些思考。只要教師在課堂上關注學生,關注學生的學,定能讓課堂煥發師生生命的活力,帶來課堂上難以預約的精彩!

    【《小數的意義》教學設計】相關文章:

    小數的意義教學設計01-12

    小數的意義教學設計通用12-14

    《小數的產生和意義》教學設計11-23

    《小數的意義和讀寫》教學設計01-31

    小數的意義教學教案設計01-25

    《小數的意義》教學設計(通用10篇)02-13

    蘇教版《小數的意義》教學設計(通用10篇)11-13

    小數乘小數教學設計01-11

    《小數乘小數》的教學設計02-20

    <address id="ousso"></address>
    <form id="ousso"><track id="ousso"><big id="ousso"></big></track></form>
    1. 日日做夜狠狠爱欧美黑人