圓的面積教案
作為一名優秀的教育工作者,常常需要準備教案,教案是教學活動的依據,有著重要的地位。那要怎么寫好教案呢?下面是小編為大家整理的圓的面積教案,希望對大家有所幫助。

圓的面積教案1
一、教材分析
圓是小學數學平面圖形教學中唯一的曲線圖形。《圓的面積》是在學生了解和掌握了圓的特征、學會計算圓周長的計算以及學習過直線圍成的平面圖形面積計算公式的基礎上進行教學的。鑒于此,我在教學圓的面積公式時,運用遷移和同化理論,以直線圍成的平面圖形面積推導方法為基礎,將本節課中“化曲為直”的轉化思想,確立為本節課的教學重點。通過一系列的活動將新的數學思想納入到學生原有的認知結構之中,從而完成新知的建構過程。
二、教學理念
新課程改革以來,課程理念發生了變化,提倡學生主動參與、樂于探究、勤于動手,改變學生的學習方法,讓學生在自主探索和合作交流的過程中,真正理解和掌握基本的數學知識與技能、思想和方法,獲得廣泛的數學活動經驗。根據這一理念,這節課我采取大膽猜想、讀書自悟、得出結論這一線條明晰的教學程序,通過用數方格的方法,獲得對圓面積的大膽猜想,得到圓面積應在2r2和4r2之間的直觀感知,強化學生的估算能力;為克服本課讓學生操作容易出現很多不可預見的問題,我充分運用開課情境,在學生思維達到欲求不達的狀態時,采用“讀書”這一常規方法,突破本節課“化曲為直”這一教學難點。利用多媒體優勢,為學生展現“化曲為直”的過程,直觀的看到轉化的過程,深化對轉化法的理解與認識,進而推導出圓面積的計算公式。這樣把探究的空間和時間還給學生,把動手動腦的權利和機會還給學生,注重學生數學思想與數學方法的學習。
三、教學流程
(一)情境導入激疑引思
開頭以學生喜聞樂見的戰斗影片中手榴彈落地后會造成一個殺傷范圍的情境導入新課,讓學生感受到這個殺傷范圍就是一個圓形,在新課引入時就強化,面積是一片,周長是條線,面積和周長是兩個不同的概念,揭示圓面積的意義。同時,明確落地點就是圓心,這樣既是對舊知識的復習,又可以極大地激發學生的學習興趣,使學生明白,圓心確定位置,半徑決定大小感受到數學源于生活,又服務于生活,為迅速進入數學情境打下基礎。
(二)溫故知新鋪墊導引
一切新認知都是建立在原有認知的基礎上的,學生探究圓的面積也不例外。因此,復習長方形、正方形、平行四邊形、三角形和梯形等平面圖形面積公式的推導過程,就是一個必不可少的環節。
我認為,簡單的重復是沒有意義的,所以在復習的過程中,以概括總結平面圖形面積公式推導的兩種方法:一是數方格,二是轉化法為主要內容,明晰這兩種方法的的內涵所在。其目的是:數方格可以為后面學生大膽猜想圓面積的范圍打基礎;轉化法則可以為后面將圓轉化成長方形提供思維基礎。同時,在師與生的對話與研究中讓學生感受到數學方法的重要性,將數學方法和數學思想滲透在教學中。
(三)大膽猜想鼓勵估算
用什么方法可以求出圓的面積呢?大家根據自己的學習經驗大膽地猜一猜,用數方格的方法看能不能求出圓的面積?
一石激起千層浪,學生會各舒已見。通過討論(畫圖驗證)看來用數方格這種方法很難求出圓的面積,但通過方格圖我們可以看到圓的面積比2個方格的面積要大(2r2),但又比4個方格的面積要小(4r2),根據你的觀察猜猜看,圓的面積最有可能是多少?(方格以圓的半徑為邊長)學生結合上節課所學知識,很有可能說出3.14這個結論。
也就是說大家猜想圓的面積等于一個數3.14(以學生的實際猜想為準)乘半徑的平方,大家的猜想對嗎?我們怎樣來驗證我們的猜想呢?
(四)探究想像驗證猜想
大家想一想圓怎樣才能轉化成我們學過的圖形呢?回想以前學習過的轉化法,把圓象平行四邊形一樣沿著一條直線剪開可以轉化為學過的圖形呢?還是象三角形和梯形一樣用兩個完全一樣的圖形可以拼成學過的圖形呢?(小組討論)學生的思維在矛盾中碰撞,產生對新知識的求知欲望。這時,我讓學生去自學課本,學生的閱讀效果不言而喻。
通過自學你發現怎樣才能把圓轉化成我們學過的圖形?在充分的說中,使思想條理化、清晰化,學習相長,互相借鑒,達到不講自明的效果。
大家閉上眼睛,想象一下如果把圓平均分成32份、64份、128份、256份、512份、1024份……就這樣一直分下去,最后會那條曲線會變得更直,成為一條直線段。
自學課本、交流借鑒、閉眼想像,(五)對比明晰拓展思維
長方形的長相當于圓的什么?寬呢?在此基礎上引導學生根據長方形的面積公式推導出圓的面積公式,從而驗證同學們的猜想。我沒有滿足于這樣的單一結論,而是又提出了一個新的問題:課本中將圓剪拼成了一個長方形,除了可以拼成近似的平行四邊形或長方形外,我們看還可拼成三角形、梯形,并用多媒體課件展示拼成的不同圖形。把學生的思維空間引向更寬更廣的層次,形成一個開放的思維空間,為學生今后的發展打下良好的基礎。體現了出于課本而高于課本,活于課本,深于課本的教學設計思路。
(六)練習鞏固首尾呼應
首先,解決課始故事中提出的手榴彈殺傷面積問題。既照應了開頭,又鞏固了本節課的學習內容。其次,聯系生活實際求圓形花壇的`面積。第三,利用圓面積的計算方法來解決生活中的實際問題。通過三道強化練習題,鞏固加深所學知識。
另外,我的板書設計是這樣的:(見課件)
圓的面積
四、教學反思
綜觀本節課的教學設計,我認為體現了以下三個特點:
1.體現了“過程”意識
數學學習的本質是“再創造”。數學學習的過程不是讓學生被動地吸收教材和教師給出現成結論,而是一個由學生親自參與、生動活潑的、主動的和富有個性的過程。因此,在數學學習過程中,應給學生搭建探究的舞臺,強化過程意識,以激勵學生再創新。課堂的生命活力正是來自于對事件或事實的感受、體驗,來自于對問題的敏感、好奇,來自于情不自禁的、豐富活躍的猜想、假設、直覺,來自于不同觀點的碰撞,爭辯,更來自于探究體驗中的時而山窮水盡,時而柳暗花明的驚險和喜悅。只有經歷這樣的感悟、體驗的過程,才能得到能力的錘煉,智慧的升華。
2.創造性地使用教材
新課標指出,教師是學生數學活動的組織者、引導者、合作者。教師要積極利用各種教學資源,創造性地使用教材,設計適合學生發展的教學過程。本節教材是直接讓學生操作把圓平均分成16份,用轉化法推導出圓的面積。這樣學生固然也能掌握圓的面積,但對知識的推導是只知其然不知其所以然。而我在本節教材的處理中,大膽地改革教材,創造性地使用教材。讓學生先根據舊知概括出求面積的兩種方法,然后讓學生大膽地猜想數方格能不能求出圓的面積。在發現數方格的方法很難求出圓的面積后,讓學生根據方格圖大膽地猜想出圓面積的范圍。之后在教師的啟發引導下,使學生獲得用轉化法可能求出圓的面積,在此基礎上讓學生通過自學、討論、操作、探究得出圓面積的計算。這一過程的設計正體現了新課標所倡導的三維教學目標,由重結論向重過程轉變。不僅重視學生數學知識的獲得,更重視數學思想和數學方法的形成。使學生學得更有趣,更有價值。
3.重視應用意識的培養
“從生活中歸納出數學,要回歸到生活”這是我們數學價值的所在,也是我們教學者所追求的目標。在本節課中,課始,通過學生喜聞樂見的手榴彈爆炸引出求圓的面積的實際問題;課中以學生已有的知識經驗為基礎,用學過的舊知識解決所面臨的新問題;課后對應開頭解決課始提出的求手榴彈爆炸力的范圍,設計生活中實際求圓的面積的應用等,這一切都充分體現了對學生數學應用意識的培養。
圓的面積教案2
教材分析
教材首先通過圓形草坪的實際情景提出圓面積的概念,使學生在舊知識的基礎上理解“圓的面積就是它所占平面的大小”。其次教材直接提出問題:能不能把圓轉化成已學過的圖形來計算面積?由于讓學生完全自主的探索如何把圓轉化成長方形是有很大難度,但是教材給出了提示,讓學生利用學具進行操作,在此基礎上讓學生發現院的面積與拼成的長方形面積的關系,圓的周長,半徑和長方形的長,寬的關系并推導出圓的面積計算公式,最后教材安排了例題,應用面積計算公式解決實際問題,已知直徑,先求出半徑,再求出面積。
學情分析:
1. 充分利用已學過的.數學知識和教學思想方法進行教學。如,教學圓的面積的含義時,可以先讓學生回憶已學過的圖形面積的含義,并進行分析對比,使學生認識到它們的共同點都是指圖形所占平面的大小。
2. 要充分利用直觀教具,讓學生在動手操作中自主探索,例如,教學圓面積計算公式的推導過程時,可以先讓學生把教材后面所附的圓形做成學具,在教師指導下,可以通過小組合作的方式,自行決定等分成多少份,自由的分一分,剪一剪,拼一拼。最后把拼成的加以比較,使學生看到。分的份數越多,每一份就會越細,拼成的圖形就會越近似于長方形。
教學目標
1.了解圓的面積的含義,經歷圓面積計算公式的推導過程,掌握圓的面積計算公式。
2.能正確運用圓的面積公式計算圓的面積,并能運用圓面積的知識解決一些簡單的實際問題。
3.在估一估和探究圓面積公式的活動中,體會“化曲為直”的思想,初步感受極限思想。
教學重點和難點
教學重點: 圓的面積公式的推導及應用公式計算
教學難點:探究圓的面積公式的推導過程
圓的面積教案3
教學內容:課本例3,第115頁練習二十七的第1~5題。
教學目的:通過教學建立圓面積的概念,理解圓面積計算公式的推導過程,掌握圓面積的計算公式;能正確地應用圓面積的計算公式進行圓面積的計算并能解答有關圓面積的實際問題。
重點:圓面積計算公式。
難點:圓面積計算公式的推導。
教具、學具:圓的面積演示教具及平行四邊形拼割教具;厚紙做的圓及剪刀與膠布。
教學過程():
一、復習。
1.口算:
2.已知圓的半徑是2.5分米,它的周長是多少?
3.一個長方形的長是6.2米,寬是4米,它的面積是多少?
4.說出平行四邊形的面積公式是怎樣推導出來的?
我們已經學會的圓周長的有關計算,這節課我們要學習圓的面積的'有關知識。(板書課題:圓的面積)
二、新授。
1.圓的面積的含義。
問:面積所指的是什么?(物體的表面或圍成的平面圖形的大小,叫做它們的面積。)
以前學過長方形面積的含義是指長方形所圍成平面的大小。那么,圓的面積的是指什么?(圓所圍成平面的大小,叫做圓的面積。)
2.圓的面積公式的推導。
怎樣求圓的面積呢?如果用面積單位直接去度量顯然是行不通的。但我們可以仿照求平行四邊形面積的方法——也就是割補法,把圓的圖形轉化為已學過的圖形——長方形。怎樣分割呢?教師拿出圓的面積教具進行演示:
先把一個圓平均分成二份,再把每一個等份分成八等份,一共16份,每份是一個近似等腰三角形,并寫上號數,然后把這16份拼成一個近似的平行四邊形。(學生試操作,把學具圓拼成一個平行四邊形。)
再把第1份平均分成2份,拿出其中的1份(即原來的半份)移到平行四邊形的右邊,這樣就拼成一個近似長方形。
向學生說明:如果分的等份越多所拼的圖形就越接近長方形。
教師邊提問邊完成圓面積公式的推導:
拼成的圖形近似于什么圖形?
原來圓的面積與這個長方形的面積是否相等?
長方形的長相當于圓的哪部分的長?
長方形的寬是圓的哪部分?
長方形的面積=長×寬
圓的面積 = ×
= ×
= ×
=
用S表示圓的面積,那么圓的面積可以寫成:
3.圓面積公式的應用。
出示例1:一個圓的半徑是4厘米。它的面積是多少平方厘米?
學生讀題,問:要求圓的面積的條件是否具備?怎樣列式?學生回答,教師板書:
=3.14×
=3.14×16
=50.24(平方厘米)
答:它的面積是50.24平方厘米。
三、鞏固練習。
1.根據下面所給的條件,求圓的面積。
半徑2分米。
直徑10厘米。(先提問:題目只告訴圓的直徑,你能求出圓的面積嗎?怎樣算?)
2.練習二十七的第1~4題。
強調書寫格式,運算順序與單位名稱。
總結:通過這節課學習理解圓面積計算公式的推導,掌握了圓面積計算公式,并知道要求圓的面積必須知道半徑,如果題目只告訴直徑也就先求出半徑再按公式 計算。
四、作業。
練習二十七第5、6題。
圓的面積教案4
1、基礎練習:計算下面各圖形的周長和面積。只列式,不計算。(P128圖略)
2、火眼金睛。(判斷對錯)
①一個三角形,底6分米,高5分米,它的面積是30平方分米。()
②一個邊長5米的正方形,它的面積是20平方米。()
③一個圓,直徑是2厘米,它的`面積是12.56平方厘米。()
3、對號入座。
①邊長是4米的正方形,()
A周長面積;B周長面積;C周長=面積;D周長和面積無法比較
②一個平行四邊形和一個三角形等底等高,已知平行四邊形的面積是25平方厘米,那么三角形面積是()平方厘米。
A、5B、12.5C、25D、50
4、走進生活。
①假如你家里要在一塊邊長2米的正方形木板上,劇一個最大的圓用來做飯桌面,請你算出這個圓面的面積并說出理由。
②設計比演,時間3分鐘。現在請你來當小設計師,發揮你的設計才能,運用這幾種平面圖形對學校正門前的空地的布局進行重新規劃設計,我們看看誰的設想既美觀又合理。(注:設計時可以把圖形進行組合)
(1)小組在白紙上進行設計。匯報:用什么圖形設計出了什么?
(2)你準備怎樣計算你設計中這些圖形的周長和面積呢?
七、全課小結。通過同學們的認真學習,大膽創新設計,我相信你們當中有很多同學會成為杰出的設計師。
八、作業。把你的設計完成,并寫出每個圖形的周長和面積的計算。
九、板書設計:(電腦演示)
平面圖形的周長和面積
貼卡片ac=4a
s=a2hbc=a+b+h
aas=ah2
b
ac=2(a+b)
c=2(a+b)s=ahac=a+b+c+d
s=abcd
bs=(a+b)h2
c=2лr;s=лr2
(聯系轉化應用)
圓的面積教案5
教學目標
1、使學生理解圓的面積的含義.經歷體驗圓的面積公式的推導過程,理解和掌握圓的面積公式.
2、使學生能夠正確地計算圓的面積,培養學生解決簡單的實際問題的能力,滲透類比、極限的思想。
3、通過圓的`面積公式推導過程,培養學生的合作精神和創新意識,培養觀察、猜想、驗證的實驗方法與態度。
教學重點
圓面積的公式推導的過程。
教學難點
理解圓經過無數等分剪拼后可以拼成一個近似的長方形。并且發現拼成的長方形的長相當于圓周長的一半。
教具、學具準備
有關圓面積的課件,彩色圓形紙片(每小組1個),剪刀(每組2把).學生每人準備一個圓形物品。
教學過程
一、創設情境,提出問題
【課件演示】花園里新建了一個圓形花壇,為了讓花壇更漂亮,管理員叔叔打算給花壇鋪上草坪,需要多少平方米的草坪呢?這實際上是要解決什么數學問題?
揭示課題:圓的面積
二、充分感知,理解圓的面積的意義。
提問:什么叫圓的面積呢?請大家拿出準備好的圓形紙片,用你喜歡的方式感受一下圓的面積,告訴大家圓的面積指的是什么?
課件顯示:圓所占平面的大小叫做圓的面積。
你認為圓面積的大小和什么有關?
三、自主探究,合作交流。
1、引導轉化:
回憶學過的一些平面圖形的面積的推導過程,這些圖形面積公式的推導過程有什么共同點?那么能不能把圓也轉化成學過的平面圖形來推導面積計算公式?
2、動手嘗試探索。
(1)分小組動手操作,剪一剪,拼一拼,看能拼成什么圖形?
(2)展示交流并介紹:你拼成了什么圖形?在拼的過程中你發現了什么?
如果我們再繼續等分下去,拼成的圖形會怎么樣?
小結:隨著等分的份數無限增加,可以把圓剪拼成一個近似的長方形。
你能否根據圓與剪拼成的長方形之間的關系想出圓的面積公式?
3、學生合作探究,推導公式
圓的面積教案6
【教學內容】
圓的面積
【教學目標】
知識與技能:通過操作,使學生理解圓的面積公式推導過程,掌握求圓的面積的方法并能正確計算。
過程與方法:激發學生參與整個課堂教學活動的學習興趣,培養學生的分析、觀察和概括能力,發展學生的空間觀念。
情感、態度與價值觀:培養學生的空間觀念。
【教學重難點】
重點:
1、理解圓的面積公式的推導過程。
2、掌握圓的面積的計算公式,能夠正確地計算圓的面積
難點:理解圓的面積公式的推導過程。
【導學過程】
【知識回顧】
1、還記得這些平面圖形的面積計算公式嗎?
2、平行四邊形的面積公式推導過程還記得嗎?
我們是通過剪拼的方法把它轉化成長方形的。
【新知探究】
(一)、定義:
1、請你摸一摸哪里是圓的面積?
2、師:圓所占平面的大小就是圓的面積。
引導學生操作:
師:(拿出一個圓片)我們怎么剪?圓的大小是由什么決定的?(直徑、半徑)
生:(圓的大小由直徑或半徑決定。)沿直徑或半徑剪。
師剪第一刀,再問:第二刀怎么剪?
師:我們要把圓通過剪成多份并用拼的方法轉化成學過的規則圖形,為了計算上的方便,我們把圓平均分成多份。
將一個圓分別平均分成2份、4分、8分、16份,分別羅列排好。請學生觀察四組圖。
師:隨著等分份數的不斷增加,你有什么發現嗎?
A:隨著等分份數的不斷增加,曲線越來越直。
B:隨著等分份數的不斷增加,每一小份越來越接近三角形。
(三)拼擺推導面積公式。
1、拼擺
師:把圓轉化成什么圖形?我們來試一試。
學生操作,演示學生的作品。
師:轉化后的圖形面積與圓的面積有什么關系?面積不變。
課件出示:把圓等分成不同等份時的圖形的趨勢。
2、推導面積公式
小組討論:長方形各部份相當于圓的.什么?
請你推導圓的面積公式。
學生匯報:(2~3名學生說,老師說,全班說推導過程)
(4)學生齊讀圓面積公式(S=πr2)。并說說圓面積的大小與什么有關?(半徑)給直徑怎辦?(先求出半徑,再求面積)
【設計意圖】在這個環節教師成為學生的學習伙伴,在教師的引導和啟發中,讓每個學生都動口,動手,動腦,培養學生學習的主動性和積極性。創造一個和諧、高效的學習氛圍。
【知識梳理】
本節課學習了什么知識?
【隨堂練習】
1、根據下面所給的條件,求圓的面積。
(1)、半徑2分米
(2)、直徑10厘米
2、一個雷達屏幕的直徑是40厘米,它的面積是多少平方厘米?
3、判斷對錯:
(1)圓的半徑越大,圓所占的面積也越大。()
(2)圓的半徑擴大3倍,它的面積擴大6倍。()
圓的面積教案7
教學內容:
國標本蘇教版五下第十單元P103-105例7、例8和“練一練”、練習十九的第1題
教學目標:
1、使學生經歷操作、觀察、驗證和討論歸納等數學活動的過程,探索并掌握圓面積的計算公式,能正確計算圓的面積,并能應用公式解決相關的簡單問題。
2、使學生進一步體會“轉化”方法的價值,培養運用已有知識解決新問題的能力,發展空間觀念和初步推理的能力。
3、讓學生進一步體驗數學與生活的聯系,感受用數學的方式解決實際問題的過程,提高數學學習的興趣。
教學重點:
探索圓面積的計算
教學難點:
理解面積的意義,推導圓的面積計算公式
教學過程
一、導入新課。
(一)關于圓你已經知道了什么?你還想知道什么?
(二)你覺得什么是圓的面積?(讓學生用手摸一摸圓的周長和面積)
(三)你覺得圓的面積可能和什么有關?
(四)出示下圖
(五)問:看了上圖你有什么想法?(課件動態顯示圓面積與4r2
和3r2的)關系。
(六)思考:圓的面積應該怎樣計算呢?對于這個問題你有些什么思考?
小結:將圓轉化成已學過的圖形,從而推導出它的面積計算公式。是一種不錯的想法。
二、探索圓積的計算公式
(一)讓學生試著將圓剪拼成長方形。
(二)閱讀課本P104頁
(三)讓學生再操作
(四)課件演示
(五)讓學生觀察、比較、想象。如果等分的份數越多,每一份就會越細,拼成的圖形就會越接近于長方形。
(六)引導觀察討論:這個拼成的長方形和圓有什么關系?
(七)匯報討論結果。
這個用圓分割成的小塊拼成的長方形,寬就是圓的半徑r,長就是圓的周長的一半,也就是2πr÷2=πr。
因為長方形面積=長×寬
所以圓的面積=πr×r=πr2
用S表示圓的面積,那么圓的.面積計算公式就是:
S=πr2
(八)讓學生用語言表述圓面積的推導過程(指名說、同桌互說)
(九)教學例9
1、出示例9。一個自動旋轉噴水器的最遠噴水距離大約是5米。它旋轉一周后噴灌的面積大約是多少平方米?
2、讓學生嘗試解答。
3、集體評議
4、思考:在進行圓面積的計算時要注意什么?(平方的計算和單位名稱)
三、知識運用
(一)求出下列各個圖形的面積。(P105頁的練一練)
(二)根據下面所給的條件,求圓的面積。
1)半徑2分米2)直徑10厘米3)周長12.56
(生獨立解答,思考3)面積和周長相等嗎?做了這些題目你有什么體會?)
四、本課小結。
通過本課的學習你有什么收獲?有什么體會?
圓的面積教案8
教學內容
教材40頁、41頁例1、例2、例3及做一做,練習十第2-5題。
素質教育目標
(一)知識教學點
1.理解圓柱的側面積和表面積的含義。
2.掌握圓柱側面積和表面積的計算方法。
3.會正確計算圓柱的側面積和表面積。
(二)能力訓練點
能靈活運用求表面積、側面積的有關知識解決一些實際問題。
教學重點
理解求表面積、側面積的計算方法,并能正確進行計算。
教學難點
能靈活運用表面積、側面積的有關知識解決實際問題。
教具學具準備
1.教師、學生每人用硬紙做一個圓柱體模型。
2.投影片。
教學步驟
一、鋪墊孕伏
1.口答下列各題(只列式不計算)。
(1)圓的半徑是5厘米,周長是多少?面積是多少?
(2)圓的直徑是3分米,周長是多少?面積是多少?
2.長方形的面積計算公式是什么?
3.教師出示圓柱體模型,指同學說出它有什么特征?
二、探究新知
1.利用圓柱體模型的側面展開圖,引導學生概括出圓柱側面積的計算方法。
(1)讓學生觀察議論:圓柱的側面展開圖(是長方形)的長與寬分別和圓柱底面周長與高的關系。
(2)引導學生概括出:因為長方形的面積等于長×寬,而這個長方形的長等于圓柱的底面周長,寬等于圓柱的高,長方形的面積就是圓柱的側面積,所以圓柱的側面積等于底面周長乘以高。
2.教學例1
(1)出示例1,指同學讀題,找出已知條件和所求問題。
學生獨立解答,并把計算步驟填在課本50頁例1下面的空白處,然后訂正。
板書:3。14×0。5×1。8
=1。75×1。8
≈2。83(平方米)
答:它的側面積約是2。83平方米。
(2)反饋練習:完成做一做41頁第1題。
學生獨立解答,然后訂正。
3.教學
(1)教師說明:圓柱的側面積加上兩個底面積就是。
(2)讓學生利用圓柱體模型展開圖進行比較、區別,從而使學生清楚:是指圓柱表面的面積,是側面積加上兩個底面積,而側面積是指圓柱側面的面積;表面積包含著側面積。
4.教學例2
(1)投影片出示例題2、圓柱的幾何圖形和表面積的展圖。
(2)指同學讀題,找出已知條件和所求問題。
(3)讓學生觀察圓柱表面積的展開圖,并小組議論:讓學生理解圓柱表面積的組成部分,再按順序說出求表面積的具體過程。具體計算由學生完成。
(4)指學生板演,其他同學在練習本上做,并把計算結果填在書上。
教師巡視指導,注意檢查學生的計算結果和計量單位是否正確。
做完后訂正,訂正時讓學生說出有關的計算公式。
(5)反饋練習:完成做一做第2題。
指一名學生在小黑板上做,其他在練習本上做,然后訂正,訂正時讓學生講解題方法。
5.教學例3
(1)出示例3,指名讀題,找出已知條件和所求問題。
(2)教師提示:解答這道題應注意什么?
啟發學生說出:這道題是求做這個水桶要用鐵皮多少平方厘米。實際上是求這個圓柱形水桶的表面積。題里告訴我們的“一個沒有蓋的`圓柱形鐵皮水桶”,計算時就是用側面積加上一個底面積。
(3)學生在練習本上做,教師巡視指導,注意檢查學生的計算結果。如果發現計算結果是1800平方厘米的讓該生上黑板上做。
(4)訂正,讓板演的學生講解題的思路和計算結果取近似值的方法。
(5)教師說明:這里不能用“四舍五入”法取近似值。在實際中,制作水桶使用的材料要比計算得到的數多一些,這樣才能保證原材料夠用。那么保留整百平方厘米時,十位上即使是4或比4小,也要向前一位進1。這種取近似值的方法叫做進一法,所以這題的計算結果應是1900平方厘米。
(6)“四舍五入”法與“進一法”有什么不同。
通過比較,使學生明白:“四舍五入”法在取近似值時,看要保留位數的后一位,是5或比5大的舍去尾數
圓的面積教案9
教學內容:六年制小學數學教科書第十一冊第一單元《圓的面積》中的第一節課,數學 - 圓的面積(一)。
教學目的:
1.通過教學使學生建立圓面積的概念,理解圓面積計算公式的推導過程,掌握圓面積的計算公式。
2.能正確地應用圓面積計算公式進行圓面積的計算,并能解答有關圓的實際問題。
教學重點:理解和掌握圓面積的計算公式的推導過程
教學難點:圓面積計算公式的推導
教學過程:
一 、創設情境,提出問題
( 課件演示)用一根繩子把羊栓在木樁上,演示羊邊吃草邊走的情景。(生看完提問題)
生:1羊走一圈有多長?2羊最多能吃到多少草?3羊能吃到草的'最大面積是多少?
二、引導探究,構建模型
A:啟發猜想
師:羊吃到草的最大面積最大是圓形:1、這個圓的面積有多大猜猜看;2、試想圓的面積和哪些條件有關?3、怎樣推導圓的面積公式?(生試說)
B:分組實驗,發現模型
學生分小組將平均分成16等分、32等分的圓放在桌上自由拼擺,拼成以前學過的平面圖形擺好后想一想:1、你擺的是什么圖形?2、你擺的圖形與圓的面積有什么關系?3、圖形各部分相當于圓的什么?4、你如何推導出圓的面積?
請小組長匯報拼擺的情況,鼓勵學生拼擺成不同的平面圖形(師課件展示動畫效果)可以拼擺成長方形、梯形、三角形、平行四邊形四種情況,小學數學教案《數學 - 圓的面積(一)》。
三、 應用知識,拓展思維
1師:要求圓的面積必須知道什么?
2 運用公式計算面積
A完成羊吃草的面積
B完成課后“做一做”
C一個圓的直徑是10厘米,它的面積是多少平方厘米?
D找出身邊的圓,同桌合作量一量半徑,算一算面積(完成實驗報告單)
測量物直徑(厘米)半徑(厘米)面積(平方厘米)
3應用知識解決身邊的實際問題(知識應用)
下面是一個體育場的平面圖,請你算一算跑道的周長是多少米?長方形體育場的占地面積是多少平方米?學校要請師傅給體育場鋪草皮,已知每平方米的草皮是2.4元,學校一共要付多少錢才能完成?
四 歸納總結,完善認知
今天學了什么,這些知識我們是用什么方法學來的,你懂得了什么?
圓的面積教案10
學材分析
教學重點:
面積計算公式的正確運用。
教學難點:
面積公式的推導過程。
學情分析
學生對圓面積公式的推導過程理解有一定的難度。
學習目標
1.理解圓面積計算公式的推導過程,掌握圓面積的計算公式。
2.會用圓面積的計算公式,正確計算圓的面積。
導學策略
導練法、遷移法、例證法
教學準備
圓的面積模型、圓規、投影儀、投影片
教師活動
學生活動
一.引入
1.什么叫做圓面積?
2.出示大小略有不同的兩個圓,讓學生比較哪個圓的面積大?大多少?(學生口答后把兩圓重疊,比較大小。)相差多少呢?
3.引出課題。
二.推導
1.問:小正方形面積怎樣計算?(半徑半徑)圓面積與小正方形面積的3倍誰大誰小?圓面積與小正方形面積的4倍呢?2倍呢?
2.師生共同操作:拿出一張正方形紙,按要求對折4次(注意第4次折的折法,是按角對分地折),然后拿尺量出一等腰三角形剪一刀,展開,得到一個近似于圓的紙片。
3.教師操作:拿一張正方形紙,對折5次,剪一刀展開。與前一次剪的作比較,使學生知道,隨著折的`次數不斷增加,剪下的圖形也就越接近圓。
4.分析推導。師生共同拿出剪好的圖形分析:這個圖形等分成若干塊,每一塊都是什么形狀?(等腰三角形)這個圖形的面積怎么求?隨著折的次數不斷增加,剪下的圖形的面積也就越接近什么圖形的面積?
板書:圖形面積=等腰三角形面積n=底高2n=Cr2n
=2rn
圓的面積=r2
邊板書邊提問:等腰三角形的底是多少?(C)等腰三角形的高相當于圓的什么?(半徑r)
5.在上面推導的基礎上,讓學生分4人小組動手把準備的圓分成相等的16個小扇形,再拼成其他圖形,推導出圓面積公式。教師巡視,取學生拼成的各式各樣的圖形,貼在黑板上,選其中兩個進行分析。
三.鞏固
試一試。
四.總結
五.作業
學生口答
師生共同操作
師生共同操作
教學反思
已經是第2次教畢業班了記得第1次教的時候,還是幼兒園的院長一早每天都要過去一下,課前準備就不夠充分,上課就照本宣科。而現在教這個知識的時候,不僅教具演示而且學生實際操作,所以教學效果就好多了,可以說連中下生都能靈活應用這個知識。
圓的面積教案11
教學內容:教科書第107頁練習十九第2-5題
教學目標:
1、通過練習,使學生進一步掌握圓的面積公式,能正確計算圓的面積,并能應用公式解決相關的簡單實際問題。
2、進一步培養學生運用已有知識解決新問題的能力,體驗圓形與生活的聯系,感受平面圖形的學習價值,提高數學學習興趣和學好數學的自信心。
教學重點:進一步掌握圓的面積公式,能正確計算圓的面積
教學難點:能正確計算圓的面積,并能應用公式解決相關的簡單實際問題
教學流程:
一、基本練習:
1.計算下面各圓的面積。r=4分米d=10厘米r=6米d=14米
2、引入談話。師:今天我們繼續學習圓的面積計算。
二、綜合練習
1、完成練習十九第2題。要求:“鐵餅投擲圈的面積比鉛球投擲圈的面積大多少平方米?”首先要知道什么?根據直徑怎樣求出圓的`面積?
2.完成練習十九第3題。根據圓的周長怎樣求出圓的半徑呢?
3、完成練習十九第4題。要求圓桌面面積必須知道什么?根據哪個求圓桌面的半徑?
4、完成練習十九的第5題。師追問:圓的面積和周長是怎樣算的?分別指的是什么:
意義上有什么不同?
三、課堂總結
師:生活中有很多東西的形狀是圓形的,有時需要計算它的面積或周長,誰能說說在實際運用中需要注意什么?
圓的面積教案12
教學目標:
1、讓學生經歷操作、觀察、填表、驗證、討論和歸納等數學活動的過程,探索并掌握圓的面積公式,能正確計算圓的面積,并能應用公式解決相關的簡單實際問題,構建數學模型。
2、讓學生進一步體會“轉化”的數學思想方法,感悟極限思想的價值,培養運用已有知識解決新問題的能力,增強空間觀念,發展數學思考。
3、讓學生進一步體驗數學與生活的聯系,感受用數學的方式解決實際問題的過程,提高學習數學的興趣。
教學重難點:
重點:圓的面積計算公式的推導和應用。
難點:圓的面積推導過程中,極限思想(化曲為直)的理解。
教學準備:
教具:多媒體課件、面積轉化教具。
學具:書、計算器、16等份教具、作業紙。
教學過程:
一、創設情境、揭示課題
1、師:大家看,一匹馬被拴在木樁上,它吃草的時候繃緊繩子繞了一圈。從圖中,你知道了哪些信息?
(復習圓的相關特征)
師:那馬最多能吃多大面積的草呢?
師:圓所圍成的平面的大小就叫做圓的面積。
師:今天我們繼續來研究圓的面積。(揭示課題)
2、師:你想研究它的哪些問題呢?(引導學生提出疑問)
【設計意圖:在教學過程的伊始就用這個生活中的數學問題來導入新課的學習,既可以激起學生學習的興趣,又可以為后面圓面積的學習奠定基礎,更可以讓學生從課堂上涉獵生活中的數學問題,讓學生體驗到數學來源于生活。】
二、猜想驗證、初步感知
1、實驗驗證
(1)師:猜一猜,圓的面積可能會和它的什么有關系?
師:你覺得圓的面積大約是正方形的幾倍?
(2)師:對我們的估計需要進行?
生:驗證。
師:用什么方法驗證呢?
師:下面請大家先數數圓的面積是多少。
師:數起來感覺怎么樣?有沒有更簡潔一點的方法?
(引導學生發現可以先數出 個圓的方格數,再乘4就是圓的面積)
(讓學生在圖1中數一數,用計算器算一算,填寫表格里的第1行。)
圓的半徑
(cm)
圓的面積
(cm2)圓的面積
(cm2)正方形的面積
(cm2)
圓的面積大約是正方形面積的幾倍
(精確到十分位)
(3)師:只用一個圓,還不足以驗證猜想,作業紙上老師還準備了兩個圓,同桌合作,分別用同樣的方法把研究成果填寫在表格中。(課件出示圖2和圖3)
(學生完成后交流匯報。)
師:仔細觀察表中的數據,你有什么發現?
生:這三個圓的半徑雖然不同,但是圓的面積都是它對應正方形面積的3倍多一些。
3、師:正方形面積可以用r2表示,那圓的面積和它半徑平方之間有什么關系呢?
生:圓的面積是它半徑平方的3倍多一些。
小結:我們經過猜測——數方格——驗證,最終發現圓的面積是正方形面積也就是它半徑平方的3倍多一些。
設計意圖:從學生熟悉的`數方格開始學習圓面積的計算,有利于學生從整體上把握平面圖形面積計算的學習,有利于充分激活學生已有的關于平面圖形面積計算的知識和經驗,從而為進一步探索圓的面積公式作好準備。由數方格獲得的初步結論對接下來的轉化推導相互印證,使學生充分感受圓面積公式推導過程的合理性。
三、實驗操作、推導公式
1、感受轉化,滲透方法
(課件再次出示馬吃草圖)
師:知道了3倍多一些,就能準確算出這匹馬最多可以吃多大面積的草了嗎?
(引導學生發現,3倍多一些到底多多少還不清楚,需要繼續研究能準確計算圓面積的方法。)
2、師:大家還記得平行四邊形、三角形、梯形的面積計算公式分別是如何推導出來的嗎?
(學生回憶后匯報,教師演示,激活轉化思路)
3、第一輪探究——明確思路,體會轉化
師:想想看,圓能不能轉化成學過的圖形?是否可以化曲為直呢?
生:剪圓。
師:怎么剪呢?沿著什么剪?
生:沿著直徑或半徑剪開。
(分別演示2等份、4等份、8等份,引導學生發現邊越來越直,剪拼的圖形越來越接近 平行四邊形)
4、第二輪探究——明確方法,體驗極限
師:剛才我們將圓分別剪成4等份、8等份再拼成新的圖形是想干什么呀?
生:想把圓形轉化成平行四邊形。
師:那還能更像嗎?
生:可以將圓片平均分成16份。
(引導學生把16、32等份的圓拼成近似的長方形,上臺展示)
師:從哪兒可以看出這兩幅圖更接近 平行四邊形了?
生:邊更直了。
師:是什么方法使得邊越來越直了?
生:平均分的份數越來越多。
(引導學生體驗把圓平均分成64份、128份……剪拼后的圖形越來越接近長方形)
師:如果我們平均分的份數足夠多,就化曲為直,最后拼成的圖形——就成長方形了。
設計意圖:通過這一環節,滲透一種重要的數學思想——轉化,引導學生抽象概括出新的問題可以轉化成舊的知識,利用舊的知識解決新的問題,從而推及到圓的面積能不能轉化成以前學過的平面圖形!如果能,我們可以很容易發現它的計算方法了。讓學生迅速回憶,調動原有的知識,為新知識的“再創造”做好知識的準備。學生展開想象的翅膀,從而得出等分的份數愈多,拼成的圖形就越接近 平行四邊形。在想象的過程中蘊含了另一個重要數學思想的滲透——極限思想。
(2)師:我們把圓轉化成了長方形,什么變了,什么沒變?
生:形狀變了,面積大小沒有變。
師:這樣就把圓的面積轉化成了?
生:長方形的面積。
師:要求圓的面積,只要求出?
生:長方形的面積。
5、第3輪探究——深化思維,推導公式
師:仔細觀察剪拼成的長方形,看看它與原來的圓之間有什么聯系?將發現填寫在作業紙第2題中,然后小組內交流一下。
(小組討論,發現:長方形的寬等于圓的半徑,長方形的長等于圓周長的一半。)
師:長方形的寬和圓的半徑相等,這里的寬也可以用r表示。那么,長方形的長又可以怎么表示呢?(重點引導學生理解長:C÷2=2πr÷2=πr)
(通過長方形面積計算方法,引出圓的面積計算方法)
師:圓的面積是它半徑平方的3倍多一些,準確地說是它半徑平方的多少倍?
生:π倍。
師:有了這樣的一個公式,知道圓的什么,就可以計算圓的面積了。
生:半徑。
5、做“練一練”
完成作業紙第3題,交流反饋。
6、(課件再次出示牛吃草圖)
師:這匹馬最多能吃多大面積的草,現在會求了嗎?
設計意圖:在教師的引導下,使學生通過自己主動的觀察、思考、交流。運用已有的經驗去探索新知,把圓轉化成已學過的長方形來推導出圓面積的計算公式。通過實驗操作,經歷公式的推導過程,不但使學生加深對公式的理解,而且還能有效的培養學生的邏輯思維能力和演算推理能力,學生在求知的過程中體會到數形結合的內在美,品嘗到成功的喜悅。
四、解決問題、拓展應用
1、師:在日常生活中,經常會遇到與圓面積計算有關的實際問題。
(課件出示例9)
分析題意后學生獨立完成書本第105頁例9。
(組織交流,評價反饋)
2、完成作業紙第4題
師:接著看,默讀題目,完成作業紙第3題。
(學生獨立完成,交流反饋)
五、全課小結、回顧反思
師:你們對于圓面積的疑問現在解開了嗎?又有了哪些新的收獲?
師:同學們,猜想驗證、操作發現是我們在數學學習中探索未知領域時經常要用到的方法,用好它相信同學們會有更多的發現!
設計意圖:全課總結不僅要重視學習結果的回顧再現,也要關注學習經驗的反思提升。在這一過程中,學生不僅獲得了知識,更重要的是學到了科學探究的方法。
圓的面積教學反思
本節課是在學生掌握了面積的含義及長方形、正方形等平面圖形的面積計算方法,認識了圓,會計算圓的周長的基礎上進行教學的。
成功之處:
1.以數學思想為引領,探索圓的面積計算公式的推導。學生對于把圓的面積轉化為已學過圖形的面積并不陌生,通過以前相關知識的學習,學生很自然想到利用轉化思想把圓的面積轉化為長方形、平行四邊形的面積來推導計算圓的面積。在教學中,我首先通過出示學過的圖形長方形、正方形、三角形、平行四邊形、梯形,讓學生回顧這些圖形的面積計算,從而為教學圓的面積做好鋪墊。
2.利用多媒體的優勢,與學生的實際操作相結合,使學生不僅知道圓的面積推導過程,還在學習中再一次溫習轉化思想,掌握解決問題的策略。在教學中,通過學生的操作,與多媒體的動態演示,使學生清楚的發現圓的面積與近似長方形面積之間的關系:近似長方形的長相當于圓周長的一半,寬相當于圓的半徑,由此推導出圓的面積是:S=∏ 。
不足之處:
學生由于事先在課前已把課本中的附頁圓等分剪下來,對于把圓的面積轉化成長方形、平行四邊形有了一定的思維限制,學生是不是只是單純的操作,而忽略了思維的進一步深入,還有待研究。
再教設計:
盡量放手給予學生最大的思考時間和空間,讓學生在思索、質疑中不斷建構知識的來龍去脈,習題要精選,注意變化的形式。
圓的面積教案13
小學數學第十一冊第四單元圓練習題
一、填空。
(1) 寫出下面各題的最簡整數比。
①圓的半徑和直徑的比是( ),圓的周長和直徑的比是( )。
②小圓的半徑是4厘米,大圓的半徑是6厘米。小圓直徑和大圓直徑的比是( ),小圓周長和大圓周長的比是( ),小圓面積和大圓面積的比是( )。
(2)把圓分成若干等份,然后把它剪開,可以拼成一個近似于長方形的圖形,這個長方形的長相當于圓的( ),長方形的寬相當于圓的( )。
(3)圓的周長是37.68分米,它的面積是( )平方分米。
(4)圓的半徑擴大3倍,它的面積就擴大()。
(5)一個圓的周長、直徑和半徑相加的和是9.28厘米,這個圓的直徑是()厘米;面積是()。
(6)在一個邊長為12厘米的正方形紙板里剪出一個最大的圓,剩下的面積是( )。
(7)要在底面半徑是10厘米的圓柱形水桶外面打上一個鐵絲箍,接頭部分是6厘米,需用鐵絲( )厘米。
(8)用圓規畫一個圓,如果圓規兩腳之間的距離是6厘米,畫出的這個圓的周長是( )厘米。這個圓的面積是( )平方厘米。
7、用一根長12.56厘米的鐵絲圍成一個正方形,正方形的面積是()平方厘米;如果用這根鐵絲圍成一個圓,這個圓的面積是()平方厘米。
二、判斷題。正確的畫“√”,錯的打“×”,并訂正。
(1)在一個圓里,兩端都在圓上的線段叫做圓的直徑。( )
(2)小圓半徑是大圓半徑的12 ,那么小圓周長也是大圓周長的12 。( )
(3)小圓半徑是大圓半徑的12 ,那么小圓面積也是大圓面積的12 。( )
(4)半圓的周長就是這個圓周長的一半。( )
(5)求圓的周長,用字母表示就是C=πd或C=2πr。( )
三、選擇題。將正確答案的序號填在括號里。(8%)
(1)畫圓時,固定的一點叫()。
① 頂點② 圓心 ③ 字母O
(2)從圓心到圓上任意一點的()叫做半徑。
① 直線② 射線 ③ 線段
(3)周長相等的圖形中,面積最大的是()。
① 圓 ②正方形③長方形
(4)圓周率表示()
① 圓的周長②圓的面積與直徑的倍數關系 ③圓的周長與直徑的倍數關系
(5)半徑為r的圓面積等于()。
① πr2 ② 2πr2 ③πd
(6)圓的直徑長度決定圓的()。
① 位置② 大小 ③ 形狀
(7)圓的半徑擴大3倍,它的面積就擴大()。
① 3倍 ② 6倍 ③ 9倍
(8)已知圓的周長是106.76分米,圓的半徑是()。
① 17分米②8.5分米 ③ 34分米
四、應用題。
(1)一個大廳里掛有一只大鐘,它的分針長40厘米。這根分針的針尖1天轉動多少厘米?
(2)一個大廳里掛有一只大鐘,它的時針長35厘米。這根時針的針尖1天轉動多少厘米?
(3)小明騎的自行車車輪直徑是70厘米,每分鐘轉100周,從家到學校有1300米,小明大約要騎幾分鐘?(得數保留整數)
(4)一個農民新開挖一個圓形水池,水池的`周長是50.24米,求水池占地的面積是多少平方米?
(5)一張長方形紙片,長60厘米,寬40厘米。用這張紙剪下一個盡可能大的圓。剩下的面積是多少平方厘米?
(6)一個環形鐵片,內圓半徑是8厘米,外圓半徑是10厘米,這個環形鐵片的面積是多少?
(7)公園里有一個圓形花壇,周長50.24米,在它的周圍有一條寬1米的小路,小路的面積是多少平方米?
(8)學校操場(如左圖,單位:米),操場的周長是多少米?面積是多少平方米?
小學數學六年級(上冊)圓測試題 (上)
一、填空
1、( )決定圓的大小,( )決定圓的位置。
2、圓是( )圖形,它有( )條對稱軸,( )是圓的對稱軸,
3、( )是圓中最長的線段。
4、一個圓周長擴大4倍,半徑擴大( )倍,直徑擴大()倍,面積擴大()倍。
5、大圓的半徑等于小圓的直徑,那么大圓的面積是小圓面積的( )倍。
6、圓的周長公式是( )或( ),圓的面積公式是( ),半圓形的周長公式( ),圓周長的一半公式是( )
7、周長相等的長方形,正方形,圓。( )的面積最大,()的面積最小。
8、π,3.14,3.1414,0.314,31.4,從小到大排列是()。
9、圓的周長總是直徑()倍,是半徑的( )倍。
10、畫出一個圓的周長是18.84厘米,那么圓規兩腳間的距離是( )。
11、在同一個圓里,直徑和半徑的關系用字母表示是()。
12、一個半圓,半徑是r,它的周長是( )。
二、判斷
1、直徑是半徑的2倍。
2、兩端都在圓上的線段,叫半徑。
3、半徑是2厘米的圓周長和面積相等。
4、將一個圓通過切拼,轉化成一個長方形,面積和周長沒有變化。
5、如果圓的直徑是d,它的面積是 πd2 。
6、圓周率就是3.14
7、半圓形的周長就是圓周長的一半。
8、直徑是圓的對稱軸。
9、一個圓的面積和一個正方形的面積相等,它們的周長也相等
10、半圓形的面積就是圓面積的一半
三、應用
1、 一個圓形水池,直徑是20米,在水池周圍圍一圈柵欄,再在水池外圍修一條寬4米的環形小路。
(1)、柵欄的長度是多少?
(2)、這條小路的面積是多少?
2、 一根12.96 米的繩子,繞樹10圈還長0.4米,樹干橫截面的面積是多少?
3、一輛自行車輪胎外直徑是80厘米,如果平均每分鐘轉動200圈,它要通過一座長1500米的橋,大約需要多少分鐘?(得數保留整數)
4、一張長方形紙片,長4厘米,寬2厘米,要用它剪一個最大的半圓,這個半圓面積是多少,周長是多少,剩下的紙片的周長是多少?面積是多少?
5、 一個圓的周長是6280米,半徑增加1厘米,面積增加了多少平米?
6、 一只掛鐘的時針長8厘米,針尖一晝夜走過的路程是多少厘米?
7、 一只掛鐘的分針長8厘米,針尖一晝夜走過的路程是多少厘米?掃過的面積是多少?
8、 一只掛鐘的分針長8厘米,經過15分鐘分針走過的路程是多少?掃過的面積是多少?
9、 一只掛鐘的分針長8厘米,從2時到5時,分針尖端走過的路程是多少?
10一個半圓的周長是10.28厘米,這個半圓的半徑是多少,面積是多少?
11、 一臺壓路機前輪直徑是10分米,長是15分米,這臺壓路機的前輪滾動一圈,壓過的路長是多少?壓過路面的面積是多少米?
12、一座圓形游泳池,劉星沿著游泳池走了一圈,一共是628步,他每步的長約是0.6米。這個游泳池占地面積是多少?
圓的面積教案14
教學目標
1.使學生理解圓面積公式的推導過程,掌握求圓面積的方法并能正確計算;
2.培養學生動手操作的能力,啟發思維,開闊思路;
3.滲透初步的辯證唯物主義思想。
教學重點和難點
圓面積公式的推導方法。
教學過程設計
(一)復習準備
我們已經學習了圓的認識和圓的周長,誰能說說圓周長、直徑和半徑三者之間的關系?
已知半徑,圓周長的一半怎么求?
(出示一個整圓)哪部分是圓的面積?(指名用手指一指。)
這節課我們一起來學習圓的面積怎么計算。
(板書課題:圓的面積)
(二)學習新課
1.我們以前學過的三角形、平行四邊形和梯形的面積公式,都是轉化成已知學過的圖形推導出來的,怎樣計算圓的面積呢?我們也要把圓轉化成已學過的圖形,然后推導出圓面積的計算公式。
決定圓的大小的是什么?(半徑)所以,分割圓時要保留這個數據,沿半徑把圓分成若干等份。
展示曲變直的變化圖。
2.動手操作學具,推導圓面積公式。
為了研究方便,我們把圓等分成16份。圓周部分近似看作線段,其
用自己的學具(等分成16份的圓)拼擺成一個你熟悉的、學過的平面圖形。
思考:
(1)你擺的是什么圖形?
(2)所擺的圖形面積與圓面積有什么關系?
(3)圖形的各部分相當于圓的什么?
(4)你如何推導出圓的面積?
(學生開始動手擺,小組討論。)
指名發言。(在幻燈前邊說邊擺。)
①拼出長方形,學生敘述,老師板書:
②還能不能拼出其它圖形?
學生可以拼出:
等等
剛才,我們用不同思路都能推導出圓面積的公式是:S=r2。這幾種思路的共同特點都是將圓轉化成已學過的圖形,并根據轉化后的圖形與圓面積的`關系推導出面積公式。
例1 一個圓的半徑是4厘米,它的面積是多少平方厘米?
S=r2=3.1442=3.1416=50.24(平方厘米)
答:它的面積是50.24平方厘米。
想一想;求圓面積S應知道什么?如果給d和C,又怎樣求圓面積?
(三)鞏固反饋
1.求下面各圓的面積。
r=2(單位:分米) d=6(單位:分米)
2.選擇題。
用2米長的繩子把小羊拴在草地上的木框上,羊吃到地上的草的最大面積是多少?
(1)3.1422=12.56(米)
(2)3.1422=12.56(平方米)
(3)3.1432=28.26(平方米)
3.思考題:
已知正方形的面積是18平方米,求圓的面積。(如圖)
課堂教學設計說明
1.使學生運用遷移的方法,把新知識轉化為舊知識,把圓轉化成已經學過的圖形。
2.在面積公式推導過程中,老師介紹分割圓的方法,展示由曲變直的過程,然后引導學生動手操作,小組討論,從各個角度推導出圓面積公式。培養學生動手操作,口頭表達和邏輯思維的能力,滲透了極限和轉化思想。
3.安排了坡度適當、由易到難的練習題,使學生由淺入深地掌握了知識,形成了技能。同時,還注意培養學生邏輯推理的能力。
圓的面積教案15
教學內容:
圓的面積。
教學目標:
1. 通過操作,引導學生推導出圓面積的計算公式,并能運用公式解答一些簡單的實際問題。
2. 激發學生參與整個課堂教學活動的學習興趣, 培養學生的分析、觀察和概括能力,發展學生的空間觀念。
3. 滲透轉化的數學思想和極限思想。
教學重點:
正確計算圓的面積。
教學難點:
圓面積公式的推導。
學情分析:
本課是在學生掌握了面積的含義及長方形、正方形等平面圖形面積的計算方法,認識了圓,會計算圓的周長的基礎上進行教學的,教學時要注意遵循學生的認識規律,重視學生獲取知識的思維過程,重視從學生的生活經驗和已有的知識出發。
學法指導:
教學本課時,重點引導學生提出將圓割拼成已學過的圖形,組織學生動手操作,讓學生主動參與知識形成的過程,從而培養學生的創新意識、實踐能力,并發展學生的空間觀念。
教具準備:
多媒體課件,圓片。
學具準備:
把圓片分成十六等分,并按課本圖所示,剪拼并貼成近似長方形。
教學設計:
一、復習舊知,導入新課
1. 前面我們學習了圓、圓的周長。如果圓的半徑用r表示,周長怎樣表示?(2πr)周長的一半怎樣表示?(πr)
2. 課件:出示一塊圓形的桌布。如果要給這塊桌布的邊縫上花邊,是求什么?(圓形桌布的周長)
3.件:出示一塊圓形的鏡框。如果要鏡框配一塊玻璃,至少需要多大?是求什么?(圓的面積)誰能指出這個圓的面積?誰能概括一下什么是圓的面積?請同學們用手摸出學具圓的面積。
提問:如果圓的半徑是2分米,你能猜猜這塊玻璃到底有多大?(同學們紛紛地猜測,有的學生可能說這個圓面小于所在的正方形面積)
這塊圓形玻璃有多大,就是要求圓形的面積,這節課我們一起來研究怎樣計算圓的面積。(板書課題:圓的面積)
二、動手操作,探索新知
1. 回憶平行四邊形、三角形、梯形面積計算公式推導過程。
(1)以前我們學習了平行四邊形、三角形和梯形的面積計算公式。請同學們回想一下,這些圖形的面積計算公式是怎樣推導出來的?(學生回答,師用課件演示。)
(2)通過回憶這三種平面圖形面積計算公式的推導,你發現了什么?(發現這三種平面圖形都是轉化為學過的圖形來推導出它們的'面積計算公式。)
(3)能不能把圓轉化為學過的圖形來推導出它的面積計算公式呢?那么同學們想一想,圓可能轉化為什么平面圖形來計算呢?
2. 推導圓面積的計算公式。
(1)拿出已準備好的學具,說說你把圓剪拼成了什么圖形?
(2)學生小組討論。
看拼成的長方形與圓有什么聯系?
學生匯報討論結果。
(3)課件演示:請看大屏幕,把圓分成16等份,拼成了近似平行四邊形,再分成32等份,拼成近似的平行四邊形,再分成64等份,拼成近似長方形,你發現什么?(如果分的份數越多,每一份就會越細,拼成的圖形就會越接近于長方形。)
(4)你能根據長方形的面積計算公式推導出圓的面積計算公式嗎?小組討論一下。
生邊答師邊演示課件。
生答:因為拼成的長方形的面積與圓的面積相等,長方形的長相當于圓周長的一半,寬相當于半徑。
因為長方形的面積=長×寬
所以圓的面積=周長的一半×半徑
S=πr × r S=πr2 師小結公式
S=πr2,讓學生小組內說說圓的面積是怎樣推導出來的?
(5)讀公式并理解記憶。
(6)要求圓的面積必須知道什么?(半徑)
3. 利用公式計算。
(1)用新的方法算一算:剛才的玻璃到底有多大?看誰剛才猜得較接近。(學生計算并匯報)
(2)出示例3,學生嘗試練習,反饋評價。
提問:如果這道題告訴的不是圓的半徑,而是直徑,該怎樣解答?不計算,誰知道結果是多少嗎?
(3)完成第95頁做一做的第1題。
(4)看書質疑。
三、運用新知,解決問題
1. 求下面各圓的面積,只列式不計算。(CAI課件出示)
2. 測量一個圓形實物的直徑,計算它的周長及面積。
3. 課件演示
用一根繩子把羊栓在木樁上,演示羊邊吃草邊走的情景。(生看完提問題并計算)(羊吃到草的最大面積即最大圓面積是多少?)
四、全課小結
這節課你自己運用了什么方法,學到了哪些知識?
五、布置作業
1. 第97頁的第3題和第4題。
2. 找出身邊的圓,同桌合作量一量半徑,算一算面積(完成實驗報告單)
測量物、直徑(厘米)、半徑(厘米)、面積(平方厘米)
板書設計:
圓的面積
長方形的面積= 長× 寬
圓的面積=周長的一半×半徑
S=πr×r
S=πr2
【圓的面積教案】相關文章:
圓的面積教案07-31
圓的面積教案09-27
人教版圓的面積教案12-16
圓的面積教案(推薦)12-31
圓的面積教案(精選13篇)11-05
圓的面積教學設計教案11-22
【實用】圓的面積教案四篇07-21
圓的面積教案7篇[通用]12-19
圓的面積教學設計教案7篇12-08