七年級上冊數學整式教案
作為一名優秀的教育工作者,總不可避免地需要編寫教案,教案是教學活動的依據,有著重要的地位。優秀的教案都具備一些什么特點呢?以下是小編為大家收集的七年級上冊數學整式教案,僅供參考,大家一起來看看吧。

七年級上冊數學整式教案1
一、三維目標。
(一)知識與技能。
能運用運算律探究去括號法則,并且利用去括號法則將整式化簡。
(二)過程與方法。
經歷類比帶有括號的有理數的運算,發現去括號時的符號變化的規律,歸納出去括號法則,培養學生觀察、分析、歸納能力。
(三)情感態度與價值觀。
培養學生主動探究、合作交流的'意識,嚴謹治學的學習態度。
二、教學重、難點與關鍵。
1、重點:去括號法則,準確應用法則將整式化簡。
2、難點:括號前面是—號去括號時,括號內各項變號容易產生錯誤。
3、關鍵:準確理解去括號法則。
三、教具準備。
投影儀。
四、教學過程,課堂引入。
利用合并同類項可以把一個多項式化簡,在實際問題中,往往列出的式子含有括號,那么該怎樣化簡呢?
五、新授。
現在我們來看本章引言中的問題(3):
在格爾木到拉薩路段,如果列車通過凍土地段要t小時,那么它通過非凍土地段的時間為(t-0.5)小時,于是,凍土地段的路程為100t千米,非凍土地段的路程為120(t-0.5)千米,因此,這段鐵路全長為100t+120(t-0.5)千米 ①
凍土地段與非凍土地段相差100t—120(t-0.5)千米 ②
上面的式子①、②都帶有括號,它們應如何化簡?
利用分配律,可以去括號,合并同類項,得:
100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60
七年級上冊數學整式教案2
1.進一步理解字母表示數的意義,會用含字母的式子表示實際問題中的數量關系.
2.經歷用含有字母的式子表示實際問題數量關系的過程,體會從具體到抽象的認識過程,發展符號意識.
進一步理解字母表示數的意義,會用含字母的式子表示實際問題中的數量關系.
分析題目中的數量關系,用式子表示數量關系.
(設計者: )
一、創設情境 明確目標
青藏鐵路線上,在格爾木到拉薩之間有一段很長的凍土地段.列車在凍土地段的行駛速度是100 km/h,列車在凍土地段的行駛時,根據已知數據求出列車行駛的路程.
(1)2 h行駛的路程是多少?3 h呢?t h呢?
(2)字母t表示時間有什么意義?如果用v表示速度,列車行駛的路程是多少?
(3)回顧以前所學的知識,你還能舉出用字母表示數或數量關系的例子嗎?
二、自主學習 指向目標
自學教材第54至55頁,完成下列問題:
1.假設列車的行駛速度是100 km/h,根據路程、速度、時間之間的關系:路程=速度×時間,請寫出:
(1)列車2 h行駛的路程為__200__km.
(2)列車3 h行駛的路程為__300__km.
(3)列車t h行駛的路程為__100t__km.
2.在含有字母的式子中如果出現乘號,通常將乘號寫作__·__或__省略不寫__.
三、合作探究 達成目標
用字母表示數
活動一:(1)蘋果原價是每千克p元,按8折優惠出售,用式子表示現價;
(2)某產品前年的產量是n件,去年的產量是前年產量的m倍,用式子表示去年的產量;
(3)一個長方體包裝盒的長和寬都是a cm,高是h cm,用式子表示它的體積;
(4)用式子表示數n的相反數.
【展示點評】解答過程見教材第54頁例1的解.含有字母的式子中如果出現乘號,寫成“·”或省略不寫.如第(3)小題,就不能寫成a2·h.
【小組討論】用字母表示數有什么意義?
【反思小結】字母可以表示任意的數,也可以表示特定意義的公式,還可以表示符合條件的某一個數,甚至可以表示具有某些規律的數,總之字母可以簡明的將數量關系表示出來.
【針對訓練】見“學生用書”.
用字母表示簡單的數量關系
活動二:閱讀教科書例2中的.四個問題,思考:
順水行駛時,船的速度=________+________;
逆水行駛時,船的速度=________-________.
解答過程見教材第55頁例2的解答過程.
【展示點評】列式表示關系時,一定要搞清“和”、“差”、“積”、“倍”等關系.
【小組討論】用含有字母的式子表示數量關系時,關鍵是什么?應注意什么問題?
【反思小結】用含有字母的式子表示數量關系時,關鍵是找準題目中的數量關系.
注意:1.用字母表示數時,數字與字母,字母與字母相乘,中間的乘號可以省略不寫或用“·”表示;
2.字母和數字相乘時,省略乘號,并把數字放到字母前;
3.出現除式時,用分數的形式表示;
4.結果含加減運算的,需要帶單位時,式子要用“()”;
5.系數是帶分數時,帶分數要化成假分數.
【針對訓練】見“學生用書”.
四、總結梳理 內化目標
1.用字母表示數的意義.
2.用含有字母的式子表示數量關系的意義.
3.用含有字母的式子表示數量關系時要注意的問題.
實際問題―→用字母表示數―→用字母表示數量關系
《2.1整式》同步練習含答案
1. 其中長方形的長為a,寬為b.
(1)陰影部分的面積是多少?
(2)你能判斷它是單項式或多項式嗎?它的次數是多少?
《2.1整式》課后練習含答案
知識要點
1.單項式:只含有數和字母的乘積的代數式叫做單項式.單獨的一個數或一個字母也是單項式.它的本質特征在于:
(1)不含加減運算;
(2)可以含乘、除、乘方運算,但分母中不能含有字母.
2.單項式的次數、系數:一個單項式中,所有字母的指數和叫做這個單項式的次數.單項式中的數字因數叫做這個單項式的系數.
3.多項式:幾個單項式的和叫做多項式.多項式中,每個單項式叫做多項式的項,其中不含字母的項叫常數項.一個多項式中,次數最高的項的次數,叫做這個多項式的次數.
4.整式:單項和多項式統稱整式.
七年級上冊數學整式教案3
一、教學目標
知識與技能
1.理解單項式及單項式系數、次數的概念。
2.會準確迅速地確定一個單項式的系數和次數。
過程與方法
通過小組討論、合作學習等方式,經歷概念的形成過程,培養學生自主探索知識和合作交流能力。
情感態度與價值觀
初步培養學生觀察、分析、抽象、概括等思維能力和應用意識。
二、重點難點
重點
列單項式表示數量關系,單項式及其系數、次數的意義.
難點
列單項式表示數量關系.
三、學情分析
本節課是研究整式的起始課,它是進一步學習多項式的基礎,因此對單項式有關概念的理解和掌握情況,將直接影響到后續學習。要注重分析,亦即在剖析單項式結構時,借助反例練習,抓住概念易混淆處和判斷易出錯處,強化認識,幫助學生理解單項式系數、次數,為進一步學習新知做好鋪墊。
四、教學過程設計
問題設計師生活動設計意圖
[活動1]
舉世矚目的青藏鐵路于20xx年7月1日建成通車,實現了幾代中國人夢寐以求的愿望。青藏鐵路是世界上海拔最高、線路最長的高原鐵路。青藏鐵路線上,在格爾木到拉薩之間有一段很長的凍土地段。列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達到120千米/時,請根據這些數據回答問題:
列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?
提問:字母表示數有什么意義?
學生獨立思考,嘗試解決
解答:
1002=200千米
1003=300千米
100t=100t千米
我們用含字母t的式子100t表示路程。用字母表示數后,可以用含有字母的式子把數量關系簡明地表達出來,更適合一般規律的.表達。
從學生已有的數學經驗和現實問題情境出發,感受用字母表示數的意義。
以青藏鐵路為引例,對學生進行愛國主義教育的德育滲透。
七年級上冊數學整式教案4
教學目標
1、使學生理解單項式及單項系數、次數的概念,并會找出單項式的系數、次數、
2、初步培養學生的觀察分析和歸納概括的能力,使學生初步認識特殊與一般的辯證關系、
重點
掌握單項式及單項式系數、次數的概念,并會找出單項式的系數、次數、
難點
識別單項式的系數和次數、
教學過程
一、創設情境,導入新課
師:出示圖片、
青藏鐵路線上,在格爾木到拉薩之間有段很長的凍土地段,列車在凍土地段的`行駛速度是100千米/小時,在非凍土地段的行駛速度可以達到120千米/小時,請根據這些數據回答:
(1)列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?利用怎樣的一個等量關系來解決?
(2)t小時呢?
二、推進新課
(一)用含字母的式子表示數量關系、
師:出示第54頁例1、
生:解答例1后,討論問題,用字母表示數有什么意義?
學生經過討論得出一定的答案,但可能不會太規范,教師總結、
師:用字母表示數,在具有某些共性的問題上具有更廣泛的意義,在形式上更簡單,使用上更方便(可考慮補充:像這樣的用運算符號把數或字母連接起來的式子叫做代數式、一個數或表示數的字母也是代數式)、
師生共同完成例2,進一步體會用字母表示數的意義、
鞏固練習:第56頁練習、
(二)單項式的概念、
師:出示問題、
引言與例1中的式子100t,0.8p,mn,a2h,—n這些式子有什么特點?
生:通過觀察、對比、討論得出,各式都是數或字母的積、
師:指出單項式的概念,特別地,單獨的一個數或字母也是單項式、
鞏固練習:下列各式是單項式的式子是____________、
《整式的加減》同步練習
1、代數式a2+a+3的值為8,則代數式2a2+2a﹣3的值為?
2、甲、乙二人一起加工零件、甲平均每小時加工a個零件,加工2小時;乙平均每小時加工b個零件,加工3小時、甲、乙二人共加工零件___個。
《整式的加減》單元測試卷含答案
9、已知a是一位數,b是兩位數,將a放在b的左邊,所得的三位數是()
A、ab B、a+b C、10a+b D、100a+b
【考點】列代數式、
【分析】a放在左邊,則a在百位上,據此即可表示出這個三位數、
【解答】解:a放在左邊,則a在百位上,因而所得的數是:100a+b、
故選D、
【點評】本題考查了利用代數式表示一個數,關鍵是正確確定a是百位上的數字、
10、原產量n噸,增產30%之后的產量應為()
A、(1﹣30%)n噸B、(1+30%)n噸C、n+30%噸D、30%n噸
【考點】列代數式、
【專題】應用題、
【分析】原產量n噸,增產30%之后的產量為n+n×30%,再進行化簡即可、
【解答】解:由題意得,增產30%之后的產量為n+n×30%=n(1+30%)噸、
故選B、
【點評】本題考查了根據實際問題列代數式,列代數式要分清語言敘述中關鍵詞語的意義,理清它們之間的數量關系、
七年級上冊數學整式教案5
教學目標:
1、使學生在現實情境中理解有理數加法的意義
2、經歷探索有理數加法法則的過程,掌握有理數加法法則,并能準確地進行加法運算。
3、在教學中適當滲透分類討論思想。
重點:有理數的加法法則
重點:異號兩數相加的法則
教學過程:
二、講授新課
1、同號兩數相加的.法則
問題:一個物體作左右方向的運動,我們規定向左為負,向右為正。向右運動5m記作5m,向左運動5m記作-5m。如果物體先向右運動5m,再向右運動3m,那么兩次運動后總的結果是多少?
學生回答:兩次運動后物體從起點向右運動了8m。寫成算式就是5+3=8(m)
教師:如果物體先向左運動5m,再向左運動3m,那么兩次運動后總的結果是多少?
學生回答:兩次運動后物體從起點向左運動了8m。寫成算式就是(-5)+(-3)=-8(m)
師生共同歸納法則:同號兩數相加,取與加數相同的符號,并把絕對值相加。
2、異號兩數相加的法則
教師:如果物體先向右運動5m,再向左運動3m,那么兩次運動后物體從起點向哪個方向運動了多少米?
學生回答:兩次運動后物體從起點向右運動了2m。寫成算式就是5+(-3)=2(m)
師生借此結論引導學生歸納異號兩數相加的法則:異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。
3、互為相反數的兩個數相加得零。
教師:如果物體先向右運動5m,再向左運動5m,那么兩次運動后總的結果是多少?
學生回答:經過兩次運動后,物體又回到了原點。也就是物體運動了0m。
師生共同歸納出:互為相反數的兩個數相加得零
教師:你能用加法法則來解釋這個法則嗎?
學生回答:可用異號兩數相加的法則來解釋。
一般地,還有一個數同0相加,仍得這個數。
三、鞏固知識
課本P18 例1,例2、課本P118 練習1、2題
四、總結
運算的關鍵:先分類,再按法則運算;
運算的步驟:先確定符號,再計算絕對值。
注意:要借用數軸來進一步驗證有理數的加法法則;異號兩數相加,首先要確定符號,再把絕對值相加。
五、布置作業
課本P24習題1.3第1、7題。
七年級上冊數學整式教案6
教學習目標
一、知識與技能
(1)能用代數式表示實際問題中的數量關系。
(2)理解單項式、單項式的次數,系數等概念,會指出單項式的次數和系數。
講授法、談話法、討論法。
教學重點
單項式的有關概念
教學難點
負系數的確定以及準確確定一個單項式的次數
課前準備
教師準備教學用課件。
教學過程
一、新課引入
教師操作課件,展示章前圖案以及字幕,學生觀看并思考下列問題:
1、青藏鐵路線上,在格爾木到拉薩之間有一段很長的凍土地段,列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達到120千米/時,請根據這些數據回答下列問題:
(1)列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?
(2)在西寧到拉薩路段,列車通過非凍土地段所需要時間是通過凍土地段所需要時間的2.1倍,如果通過凍土地段所需要t小時,能用含t的式子表示這段鐵路的全長嗎?
(3)在格里木到拉薩路段,列車通過凍土地段比通過非凍土地段多用0.5小時,如果通過凍土地段需要u小時,則這段鐵路的全長可以怎樣表示?凍土地段與非凍土地段相差多少千米?
分析:(1)根據速度、時間和路程之間的`關系:路程=速度×時間。列車在凍土地段2小時行駛的路程是100×2=200(千米),3小時行駛的路程為100×3=300(千米),t小時行駛的路程為100×t=100t(千米)。
(2)列車通過非凍土地段所需時間為2.1t小時,行駛的路程為120×2.1t(千米);列車通過凍土地段的路程為100t,因此這段鐵路的全長為120×2.1t+100t(千米)。
(3)在格里木到拉薩路段,列車通過凍土地段要u小時,那么通過非凍土地段要(u-0.5)小時,凍土地段的路程為100u千米,非凍土地段的路程為120(u-0.5)千米,這段鐵路的全長為[100u+120(u-0.5)]千米,凍土地段與非凍土地段相差為[100u-120(u-0.5)]千米。
思路點撥:上述問題(1)可由學生自己完成,問題(2)、(3)先由學生思考、交流的基礎上教師引導學生分析怎樣列式。
上述的3個問題中的數量關系我們分別用含有字母的式子表示,通過本章學習,我們還可以將上述問題(2)、(3)進行加減運算,化簡。
kb2.下面,我們再來看幾個用含字母的式子表示數量關系的問題。
用含有字母的式子填空,看看列出的式子有什么特點。
(1)邊長為a的正方體的表面積為______,體積為_______.
(2)鉛筆的單價是x元,圓珠筆的單價是鉛筆的單價的2.5倍圓珠筆的單價是_______元。
(3)一輛汽車的速度是v千米/時,它t小時行駛的路程為_______千米。
(4)數n的相反數是_______.
教師課堂巡視,關注中下程度的學生,及時引導,學生探究交流。
上面各問題的代數式分別是:6a2,a3,2.5x,vt,-n.
觀察上面各式中運算有什么共同特點?
上面各式中,數字與字母之間,字母與字母之間都是乘法運算,它們都是數字與字母的積,例如:6a2表示6×a2,a3表示1×a3,2.5x表示2.5×x,vt表示1×v×t,-n表示-1×n.
像上面這樣,只含有數與字母的積的式子叫做單項式。單獨的一個數或一個字母也是單項式。如:-2,a,都是單項式,而,1+x都不是單項。
單項式中的數字因數叫做這個單項式的系數,例如:6a2的系數是6,a3的系數是1,-n的系數是-1,-的系數是- 。
單項式表示數字與字母相乘時,通常把數字寫成前面,當一個單項式的系數是1或-1時通常省略不寫。
七年級上冊數學整式教案7
一、內容及其分析
1、教學內容:整式的有關概念,即能夠正確判斷單項式、多項式以及單項式的系數和次數、多項式的項和次數等。
2、內容分析:本節課要學的內容整式的有關概念指的是理解并掌握整式的有關概念,能夠對一些整式進行分析,其核心是整式的有關概念,理解它關鍵就是要能從具體情景中抽象出數量關系和變化規律,使學生經歷對具體問題的探索過程,培養符號感。學生已經學過有理數的運算,本節課的內容整式的有關概念就是在此基礎上的發展。由于它還與根式的運算有直接的聯系,所以在本學科有重要的地位,并有不可忽視的作用,是本學科的核心內容。教學的重點是單項式的系數、次數,多項式的項數、次數等概念。解決重點的關鍵是通過對問題的解決使學生對單項式有個初步的理解,并歸納總結出單項式的次數和系數等概念。
二、目標及其解析
1、目標定位:理解并掌握整式的有關概念,能夠對一些整式進行分析;
2、目標解析:理解并掌握整式的有關概念,就是指能夠正確判斷單項式、多項式以及單項式的系數和次數、多項式的項和次數等。
三、問題診斷與分析
在本節課的教學中,學生可能遇到的問題是多項式的項數、次數等概念難以理解,產生這一問題的原因是單項式的項數、次數的影響。要解決這一問題,就要先分清單項式與多項式的區別,其中關鍵是能夠正確判斷單項式、多項式以及單項式的系數和次數、多項式的項和次數等。
四、教學支持條件分析
五、教學過程設計:
(一)。創設問題情境,激發學生興趣,引出本節內容
問題1:填空,觀察所填式子的特點:
(1)邊長為x的長方形的周長是__________;
(2)一輛汽車的速度是v千米/小時,行駛t小時所走的`路程是_______千米;
(3)若正方體的的邊長是a,則它的表面積是_______,體積是________;
(4)設n是一個數,則它的相反數是________.
設計意圖:通過此問題讓學生知道可以用字母表示數,從實際問題中列出式子,體會數學來源于生活,從而體會整式的實際意義。
師生活動:
1、學生自己解決上述問題,然后觀察所填式子,歸納其特點,進而初步理解單項式的概念。所填式子是4x、vt、6a2、a3、-n,特點是都是數字或字母的乘積。
2、、引導學生在觀察的基礎上歸納單項式的定義:
單項式:由數字或字母乘積組成的式子是單項式。
分析式子4x、vt、6a2、a3、-n得出:
單項式中的數字因數叫作單項式的系數(4x、vt、6a2、a3、-n的系數分別是4、1、6、1、-1);單項式中所有字母的指數和是這個單項式的次數(4x、vt、6a2、a3、-n的次數分別是1、2、2、3、1)。
例1:用單項式填空,并指出它們的系數和次數:
(1)每包書有12冊,n包書有___________冊;
(2)底邊長為a,高為h的三角形的面積是_________;
(3)一個長方體的長、寬都是a,高是h,它的體積是________;
(4)一臺電視機原價是a元,現按原價的9折出售,那么這臺電視機現在的售價為______元;
(5)一個長方形的長是0.9,寬是a,這個長方形的面積是_________.
解:(1)12n,它的系數為12,次數是1;
(2),它的系數是,次數是2;
(3),它的系數是1,次數是3;
(4)0.9a,它的系數是0.9,次數是1;
(5)0.9a,它的系數是0.9,次數是1.
問題2:根據對單項式的理解,解決下列問題。小明房間的窗戶如圖(1)所示,其中上方的裝飾物由兩個四分之一圓和一個半圓組成(它們的半徑相同)。
圖(1)裝飾物所占的面積是______.
(2)某校學生總數為x,其中男生人數占總數的,男生人數為;
(3)一個長方體的底面是邊長為a的正方形,高是h,體積是。
設計意圖:通過上面單項式的了解讓學生再一次在實際問題中列出式子,對比看是不是與單項式相似,加深對概念的理解。
師生活動:
1、學生獨立思考,分析第(1)個問題中裝飾物是由兩個四分之一圓和一個半圓組成,它們的半徑相同,由圖中的已知條件可知半徑為,所以裝飾物所占的面積恰好是半徑為的一個圓的面積即;(2)中男生人數為x;(3)中這個長方體的體積是a2h.
2、引導學生在解決問題后,分析各個單項式的系數和次數,并進行交流,在交流中糾正一些不正確的想法。
(二)問題引申、探索多項式的有關概念
問題3:
填空,然后分析所填式子的特點:
1、溫度由t°C下降5°C后是________°C;
七年級上冊數學整式教案8
學習目標
1. 理解三線八角中沒有公共頂點的角的位置關系 ,知道什么是同位角、內錯角、同旁內角.
2. 通過比較、觀察、掌握同位角、內錯角、同旁內角的特征,能正確識別圖形中的同位角、內錯角和同旁內角.
重點難點
同位角、內錯角、同旁內角的特征
教學過程
一·導入
1.指出右圖中所有的鄰補角和對頂角?
2. 圖中的.∠1與∠5∠3與∠5∠3與∠6 是鄰補角或對頂角嗎?
若都不是,請自學課本P6內容后回答它們各是什么關系的角?
二·問題導學
1.如圖⑴,將木條,與木條c釘在一起,若把它們看成三條直 線則該圖可說成"直線 和直線 與直線 相交" 也可以說成"兩條直線 , 被第三條直線 所截".構成了小于平角的角共有 個,通常將這種圖形稱作為"三線八角"。其中直線 , 稱為兩被截線,直線 稱為截線。
2. 如圖⑶是"直線 , 被直線 所截"形成的圖形
(1)∠1與∠5這對角在兩被截線AB,CD的 ,在截線EF 的 ,形如" " 字型.具有這種關系的一對角叫同位角。
(2)∠3與∠5這對角在兩被截線AB,CD的 ,在截線EF的 ,形如" " 字型.具有這種關系的一對角叫內錯角。
(3)∠3與∠6這對角在兩被截線AB,CD的 ,在截線EF的 ,形如" " 字型.具有這種關系的一對角叫同旁內角。
3.找出圖⑶中所有的同位角、內錯角、同旁內角
4.討論與交流:
(1)"同位角、內錯角、同旁內角"與"鄰補角、對頂角"在識別方法上有什么區別?
(2)歸納總結同位角、內錯角、同旁內角的特征:
同位角:"F" 字型,"同旁同側"
"三線八角" 內錯角:"Z" 字型,"之間兩側"
同旁內角:"U" 字型,"之間同側"
三·典題訓練
例1. 如圖⑵中∠1與∠2∠3與∠4, ∠1與∠4分別是哪兩條直線被哪一條直線所截形成的什么角?
小結 將左右手的大拇指和食指各組成一個角,兩食指相對成一條直線,兩個大拇指反向的時候,組成內錯角;
兩食指相對成一條直線,兩個大拇指同向的時候,組成同旁內角;
自我檢測
⒈如圖⑷,下列說法不正確的是( )
A、∠1與∠2是同位角 B、∠2與∠3是同位角
C、∠1與∠3是同位角 D、∠1與∠4不是同位角
⒉如圖⑸,直線AB、CD被直線EF所截∠A和 是同位角∠A和 是內錯角,∠A和 是同旁內角.
⒊如圖⑹, 直線DE截AB, AC, 構成八個角:
① 指出圖中所有的同位角、內錯角、同旁內角.
②∠A與∠5, ∠A與∠6, ∠A與∠8, 分別是哪一條直線截哪兩條直線而成的什么角?
⒋如圖⑺,在直角ABC中∠C=90°,DE⊥AC于E,交AB于D .
①指出當BC、DE被AB所截時∠3的同位角、內錯角和同旁內角.
②試說明∠1=∠2=∠3的理由.(提示:三角形內角和是1800)
相交線與平行線練習
課型:復習課: 備課人:徐新齊 審核人:霍紅超
一.基礎知識填空
1、如圖∵AB⊥CD(已知)
∴∠BOC=90°( )
2、如圖∵∠AOC=90°(已知)
∴AB⊥CD( )
3、∵a∥b,a∥c(已知)
∴b∥c( )
4、∵a⊥b,a⊥c(已知)
∴b∥c( )
5、如圖∵∠D=∠DCF(已知)
∴_____/pic/p>
6、如圖∵∠D+∠BAD=180°(已知)
∴_____/pic/p>
(第1、2題) (第5、6題) (第7題) (第9題)
7、如圖∵ ∠2 = ∠3( )
∠1 = ∠2(已知)
∴∠1 = ∠3( )
∴CD____EF ( )
8、∵∠1+∠2 =180°∠2+∠3=180°(已知)
∴∠1 = ∠3( )
9、∵a/pic/p>
∴∠1=∠2( )
∠2=∠3( )
∠2+∠4=180°( )
10.如圖,CD⊥AB于D,E是BC上一點,EF⊥AB于F∠1=∠2.試說明∠BDG+∠B=180°.
二.基礎過關題:
1、如圖:已知∠A=∠F∠C=∠D,求證:BD∥CE 。
證明:∵∠A=∠F ( 已知 )
∴AC∥DF ( )
∴∠D=∠ ( )
又∵∠C=∠D ( 已知 ),
∴∠1=∠C ( 等量代換 )
∴BD∥CE( )。
2、如圖:已知∠B=∠BGD∠DGF=∠F,求證:∠B + ∠F =180°。
證明:∵∠B=∠BGD ( 已知 )
∴AB∥CD ( )
∵∠DGF=∠F;( 已知 )
∴CD∥EF ( )
∵AB∥EF ( )
∴∠B + ∠F =180°( )。
3、如圖,已知AB∥CD,EF交AB,CD于G、H, GM、HN分別平分∠AGF∠EHD,試說明GM ∥HN.
七年級上冊數學整式教案9
絕對值
教學目標
1,掌握絕對值的概念,有理數大小比較法則.
2,學會絕對值的計算,會比較兩個或多個有理數的大小.
3.體驗數學的概念、法則來自于實際生活,滲透數形結合和分類思想.
教學難點 兩個負數大小的比較
知識重點 絕對值的概念
教學過程(師生活動) 設計理念
設置情境
引入課題 星期天黃老師從學校出發,開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學校、朱家尖、家在同一直線上),如果規定向東為正,①用有理數表示黃老師兩次所行的路程;②如果汽車每公里耗油0.15升,計算這天汽車共耗油多少升?
學生思考后,教師作如下說明:
實際生活中有些問題只關注量的具體值,而與相反意義無關,即正負性無關,如汽車的耗油量我們只關心汽車行駛的距離和汽油的價格,而與行駛的方向無關;
觀察并思考:畫一條數軸,原點表示學校,在數軸上畫出表示朱家尖和黃老師家的點,觀察圖形,說出朱家尖黃老師家與學校的距離.
學生回答后,教師說明如下:
數軸上表示數的點到原點的距離只與這個點離開原點的長度有關,而與它所表示的數的正負性無關;
一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值,記做|a|
例如,上面的問題中|20|=20,|-10|=10顯然,|0|=0 這個例子中,第一問是相反意義的量,用正負數表示,后一問的解答則與符號沒有關系,說明實際生活中有些問題,人們只需知道它們的具體數值,而并不關注它們所表示的意義.為引入絕對值概念做準備.并使學生體驗數學知識與生活實際的聯系.
因為絕對值概念的幾何意義是數形轉化的典型模型,學生初次接觸較難接受,所以配置此觀察與思考,為建立絕對值概念作準備.
合作交流
探究規律 例1求下列各數的絕對值,并歸納求有理數a的絕對有什么規律?
-3,5,0,+58,0.6
要求小組討論,合作學習.
教師引導學生利用絕對值的意義先求出答案,然后觀察原數與它的絕對值這兩個數據的特征,并結合相反數的意義,最后總結得出求絕對值法則(見教科書第15頁).
鞏固練習:教科書第15頁練習.
其中第1題按法則直接寫出答案,是求絕對值的基本訓練;第2題是對相反數和絕對值概念進行辨別,對學生的分析、判斷能力有較高要求,要注意思考的周密性,要讓學生體會出不同說法之間的區別. 求一個數的絕時值的法則,可看做是絕對值概念的一個應用,所以安排此例.
學生能做的盡量讓學生完成,教師在教學過程中只是組織者.本著這個理念,設計這個討論.
結合實際發現新知 引導學生看教科書第16頁的圖,并回答相關問題:
把14個氣溫從低到高排列;
把這14個數用數軸上的點表示出來;
觀察并思考:觀察這些點在數軸上的位置,并思考它們與溫度的高低之間的關系,由此你覺得兩個有理數可以比較大小嗎?
應怎樣比較兩個數的大小呢?
學生交流后,教師總結:
14個數從左到右的順序就是溫度從低到高的順序:
在數軸上表示有理數,它們從左到右的順序就是從小到大的順序,即左邊的數小于右邊的數.
在上面14個數中,選兩個數比較,再選兩個數試試,通過比較,歸納得出有理數大小比較法則
想象練習:想象頭腦中有一條數軸,其上有兩個點,分別表示數一100和一90,體會這兩個點到原點的距離(即它們的絕對值)以及這兩個數的大小之間的關系.
要求學生在頭腦中有清晰的圖形. 讓學生體會到數學的規定都來源于生活,每一種規定都有它的合理性
數在大小比較法則第2點學生較難掌握,要從絕對值的意義和數軸上的數左小右大這方面結合起來來了解,所以配置想象練習 ,加強數與形的想象。
課堂練習 例2,比較下列各數的大小(教科書第17頁例)
比較大小的過程要緊扣法則進行,注意書寫格式
練習:第18頁練習
小結與作業
課堂小結 怎樣求一個數的絕對值,怎樣比較有理數的大小?
本課作業 1, 必做題:教產書第19頁習題1,2,第4,5,6,10
2, 選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,情景的創設出于如下考慮:①體現數學知識與生活實際的緊密聯系,讓學生在這些熟悉的日常生活情境中獲得數學體驗,不僅加深對絕對值的理解,更感受到學習絕對值概念的必要性和激發學習的興趣.②教材中數的絕對值概念是根據幾何意義來定義的(其本質是將數轉化為形來解釋,是難點),然后通過練習歸納出求有理數的絕對值的規律,如果直接給出絕對值的.概念,灌輸知識的味道很濃,且太抽象,學生不易接受.
2, 一個數絕對值的法則,實際上是絕對值概念的直接應用,也體現著分類的數學思想,所以直接通過例1歸納得出,顯得非常緊湊,是教學重點;從知識的發展和學生的能力培養角度來看,教師應更重視學生的自主學習和探究的過程,關注學生的思維,做好教學的組織和引導,留給學生足夠的空間。
3, 有理數大小的比較法則是大小規定的直接歸納,其中第(2)條學生較難理解,教學中要結合絕對值的意義和規定:“在數軸上表示有理數,它們從左到右的順序就是從小到大的順序”,幫助學生建立“數軸上越左邊的點到原點的距離越大,所以表示的數越小”這個數形結合的模型.為此設置了想象練習.
4,本節課的內容包括絕對值的概念和數的絕對值的求法、有理數大小比較的法則,教學內容很多,學生接受起來可能會有困難,建議把有理數的大小比較移到下節課教學。
七年級上冊數學整式教案10
教學目的:
(一)知識點目標:
1.了解正數和負數在實際生活中的應用。
2.深刻理解正數和負數是反映客觀世界中具有相反意義的理。
3.進一步理解0的特殊意義。
(二)能力訓練目標:
1.體會數學符號與對應的思想,用正、負數表示具有相反意義的`量。
2.熟練地用正、負數表示具有相反意義的量。
(三)情感與價值觀要求:
通過師生合作,聯系實際,激發學生學好數學的熱情。
教學重點:能用正、負數表示具有相反意義的量。
教學難點:進一步理解負數、數0表示的量的意義。
教學方法:小組合作、師生互動。
教學過程:
創設問題情境,引入新課:分小組派代表,注意數學語言規范。
1.認真想一想,你能用學過的知識解決下列問題嗎?
某零件的直徑在圖紙上注明是 ,單位是毫米,這樣標注表示零件直徑的標準尺寸是 毫米,加工要求直徑可以是 毫米,最小可以是 毫米。
2.下列說法中正確的( )
A、帶有“一”的數是負數; B、0℃表示沒有溫度;
C、0既可以看作是正數,也可以看作是負數。
D、0既不是正數,也不是負數。
[師]這節課我們就來繼續認識正、負數及它們在生活中的實際意義,特別是數0。
講授新課:
例1. 仔細找一找,找了具有相反意義的量:
甲隊勝5場;零下6度;向南走50米;運進糧食40噸;乙隊負4場;零上10度;向北走20米;支出1000元;收入3500元。
例2 (1)一個月內,小明的體重增加2千克,小華體重減少1千克,小強體重無變化,寫出他們這個月的體重增長值;
(2)20xx年下列國家的商品進出口總額比上年的變化情況是:
美國減少6.4%,德國增長1.3%,法國減少2.4%,
英國減少3.5%,意大利增長0.2%,中國增長7.5%。
寫出這些國家20xx年商品進出口總額的增長率。
例3. 下列各數中,哪些是正數,哪些是負數?哪些是正整數,哪些是負整數?哪些是正分數(小數),哪些是負分數(小數)?
例4. 小紅從阿地出發向東走了3千米,記作+3千米,接著她又向西走3千米,那么小紅距阿地多少千米?
復習鞏固:練習:課本P6 練習
課時小結:這節課我們學習了哪些知識?你能說一說嗎?
課后作業:課本P7習題1.1 的第3、6、7、8題。
活動與探究:海邊的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潛水艇在海平面下30米處,現以海邊堤岸為基準,將其記為0米,那么附近建筑物及潛水艇的高度各應如何表示?
課后反思:————
七年級上冊數學整式教案11
教學目標和要求:
1.理解單項式及單項式系數、次數的概念。
2.會準確迅速地確定一個單項式的系數和次數。
3.初步培養學生觀察、分析、抽象、概括等思維能力和應用意識。
4.通過小組討論、合作學習等方式,經歷概念的形成過程,培養學生自主探索知識和合作交流能力。
教學重點和難點:
重點:掌握單項式及單項式的系數、次數的概念,并會準確迅速地確定一個單項式的系數和次數。
難點:單項式概念的建立。
教學方法:
分層次教學,講授、練習相結合。
教學過程:
一、復習引入:
1、 列代數式
(1)若正方形的邊長為a,則正方形的面積是 ;
(2)若三角形一邊長為a,并且這邊上的高為h,則這個三角形的面積為 ;
(3)若x表示正方形棱長,則正方形的體積是 ;
(4)若m表示一個有理數,則它的相反數是 ;
(5)小明從每月的零花錢中貯存x元錢捐給希望工程,一年下來小明捐款 元。
(數學教學要緊密聯系學生的生活實際,這是新課程標準所賦予的任務。讓學生列代數式不僅復習前面的知識,更是為下面給出單項式埋下伏筆,同時使學生受到較好的思想品德教育。)
2、 請學生說出所列代數式的意義。
3、 請學生觀察所列代數式包含哪些運算,有何共同運算特征。
由小組討論后,經小組推薦人員回答,教師適當點撥。
(充分讓學生自己觀察、自己發現、自己描述,進行自主學習和合作交流,可極大的激發學生學習的積極性和主動性,滿足學生的表現欲和探究欲,使學生學得輕松愉快,充分體現課堂教學的開放性。)
二、講授新課:
1.單項式:
通過特征的描述,引導學生概括單項式的概念,從而引入課題:單項式,并板書歸納得出的單項式的概念,即由數與字母的乘積組成的代數式稱為單項式。然后教師補充,單獨一個數或一個字母也是單項式,如a,5。
2.練習:判斷下列各代數式哪些是單項式?
(1) ; (2)abc; (3)b2; (4)-5ab2; (5)y; (6)-xy2; (7)-5。
(加強學生對不同形式的單項式的直觀認識,同時利用練習中的單項式轉入單項式的系數和次數的教學)
3.單項式系數和次數:
直接引導學生進一步觀察單項式結構,總結出單項式是由數字因數和字母因數兩部分組成的。以四個單項式a2h,2r,abc,-m為例,讓學生說出它們的數字因數是什么,從而引入單項式系數的概念并板書,接著讓學生說出以上幾個單項式的字母因數是什么,各字母指數分別是多少,從而引入單項式次數的概念并板書。
4.例題:
例1:判斷下列各代數式是否是單項式。如不是,請說明理由;如是,請指出它的系數和次數。
①x+1; ② ; ③ ④- a2b。
答:①不是,因為原代數式中出現了加法運算;②不是,因為原代數式是1與x的商;
③是,它的系數是,次數是2; ④是,它的系數是- ,次數是3。
例2:下面各題的判斷是否正確?
①-7xy2的系數是7; ②-x2y3與x3沒有系數; ③-ab3c2的次數是0+3+2;
④-a3的系數是-1; ⑤-32x2y3的次數是7; ⑥ r2h的.系數是 。
通過其中的反例練習及例題,強調應注意以下幾點:
①圓周率是常數;
②當一個單項式的系數是1或-1時,1通常省略不寫,如x2,-a2b等;
③單項式次數只與字母指數有關。
5.游戲:
規則:一個小組學生說出一個單項式,然后指定另一個小組的學生回答他的系數和次數;然后交換,看兩小組哪一組回答得快而準。
(學生自行編題是一種創造性的思維活動,它可以改變一味由教師出題的形式,且由編題學生指定某位同學回答,可使課堂氣氛活躍,學生思維活躍,使學生能夠透徹理解知識,同時培養同學之間的競爭意識。)
6.課堂練習:課本p56:1,2。
三、課堂小結:
①單項式及單項式的系數、次數。
②根據教學過程反饋的信息對出現的問題有針對性地進行小結。
③通過判斷一個單項式的系數、次數,培養學生理解運用新知識的能力,已達到本節課的教學目的。
四、課堂作業: 課本p59:1,2。
板書設計:
《單項式》 1.單項式的定義: 2.例1: 例2: 學生練習:
教學后記:
本節課是研究整式的起始課,它是進一步學習多項式的基礎,因此對單項式有關概念的理解和掌握情況,將直接影響到后續學習。為突出重點,突破難點,教學中要加強直觀性,即為學生提供足夠的感知材料,豐富學生的感性認識,幫助學生認識概念,同時也要注重分析,亦即在剖析單項式結構時,借助反例練習,抓住概念易混淆處和判斷易出錯處,強化認識,幫助學生理解單項式系數、次數,為進一步學習新知做好鋪墊。
針對七年級學生學習熱情高,但觀察、分析、認識問題能力較弱的特點,教學時將以啟發為主,同時輔之以討論、練習、合作交流等學習活動,達到掌握知識的目的,并逐步培養起學生觀察、分析、抽象、概括的能力,為進一步學習同類項打下堅實的基礎。
【七年級上冊數學整式教案】相關文章:
初中數學3.4整式的加減教案11-03
七年級上冊數學教案12-19
七年級數學上冊教案12-15
七年級數學上冊教案10-19
數學上冊教案11-11
七年級數學上冊人教版教案12-04
七年級數學上冊全冊優秀教案08-26
五數學上冊人教版教案11-12
人教版七年級數學上冊教案(通用15篇)01-21
- 相關推薦